public static void R_MarkLeaves() { if (r_oldviewleaf == r_viewleaf && r_novis.value == 0) { return; } if (mirror) { return; } r_visframecount++; r_oldviewleaf = r_viewleaf; byte[] vis; if (r_novis.value != 0) { vis = new byte[4096]; FillArray <Byte>(vis, 0xff); // todo: add count parameter? //memset(solid, 0xff, (cl.worldmodel->numleafs + 7) >> 3); } else { vis = Mod_LeafPVS(r_viewleaf, cl.worldmodel); } model_t world = cl.worldmodel; for (int i = 0; i < world.numleafs; i++) { if (vis[i >> 3] != 0 & (1 << (i & 7)) != 0) { mnodebase_t node = world.leafs[i + 1]; do { if (node.visframe == r_visframecount) { break; } node.visframe = r_visframecount; node = node.parent; } while (node != null); } } }
public static void SV_FindTouchedLeafs(edict_t ent, mnodebase_t node) { if (node.contents == q_shared.CONTENTS_SOLID) { return; } // add an efrag if the node is a leaf if (node.contents < 0) { if (ent.num_leafs == q_shared.MAX_ENT_LEAFS) { return; } mleaf_t leaf = (mleaf_t)node; int leafnum = Array.IndexOf(sv.worldmodel.leafs, leaf) - 1; ent.leafnums[ent.num_leafs] = (short)leafnum; ent.num_leafs++; return; } // NODE_MIXED mnode_t n = (mnode_t)node; mplane_t splitplane = n.plane; int sides = Mathlib.BoxOnPlaneSide(ref ent.v.absmin, ref ent.v.absmax, splitplane); // recurse down the contacted sides if ((sides & 1) != 0) { SV_FindTouchedLeafs(ent, n.children[0]); } if ((sides & 2) != 0) { SV_FindTouchedLeafs(ent, n.children[1]); } }
public static void R_MarkLights(dlight_t light, int bit, mnodebase_t node) { if (node.contents < 0) { return; } mnode_t n = (mnode_t)node; mplane_t splitplane = n.plane; float dist = Vector3.Dot(light.origin, splitplane.normal) - splitplane.dist; if (dist > light.radius) { R_MarkLights(light, bit, n.children[0]); return; } if (dist < -light.radius) { R_MarkLights(light, bit, n.children[1]); return; } // mark the polygons for (int i = 0; i < n.numsurfaces; i++) { msurface_t surf = cl.worldmodel.surfaces[n.firstsurface + i]; if (surf.dlightframe != r_dlightframecount) { surf.dlightbits = 0; surf.dlightframe = r_dlightframecount; } surf.dlightbits |= bit; } R_MarkLights(light, bit, n.children[0]); R_MarkLights(light, bit, n.children[1]); }
public static void SV_AddToFatPVS(ref Vector3 org, mnodebase_t node) { while (true) { // if this is a leaf, accumulate the pvs bits if (node.contents < 0) { if (node.contents != q_shared.CONTENTS_SOLID) { byte[] pvs = Mod_LeafPVS((mleaf_t)node, sv.worldmodel); for (int i = 0; i < fatbytes; i++) { fatpvs[i] |= pvs[i]; } } return; } mnode_t n = (mnode_t)node; mplane_t plane = n.plane; float d = Vector3.Dot(org, plane.normal) - plane.dist; if (d > 8) { node = n.children[0]; } else if (d < -8) { node = n.children[1]; } else { // go down both SV_AddToFatPVS(ref org, n.children[0]); node = n.children[1]; } } }
public static int RecursiveLightPoint(mnodebase_t node, ref Vector3 start, ref Vector3 end) { if (node.contents < 0) { return(-1); // didn't hit anything } mnode_t n = (mnode_t)node; // calculate mid point // FIXME: optimize for axial mplane_t plane = n.plane; float front = Vector3.Dot(start, plane.normal) - plane.dist; float back = Vector3.Dot(end, plane.normal) - plane.dist; int side = front < 0 ? 1 : 0; if ((back < 0 ? 1 : 0) == side) { return(RecursiveLightPoint(n.children[side], ref start, ref end)); } float frac = front / (front - back); Vector3 mid = start + (end - start) * frac; // go down front side int r = RecursiveLightPoint(n.children[side], ref start, ref mid); if (r >= 0) { return(r); // hit something } if ((back < 0 ? 1 : 0) == side) { return(-1); // didn't hit anuthing } // check for impact on this node lightspot = mid; lightplane = plane; msurface_t[] surf = cl.worldmodel.surfaces; int offset = n.firstsurface; for (int i = 0; i < n.numsurfaces; i++, offset++) { if ((surf[offset].flags & q_shared.SURF_DRAWTILED) != 0) { continue; // no lightmaps } mtexinfo_t tex = surf[offset].texinfo; int s = (int)(Vector3.Dot(mid, tex.vecs[0].Xyz) + tex.vecs[0].W); int t = (int)(Vector3.Dot(mid, tex.vecs[1].Xyz) + tex.vecs[1].W); if (s < surf[offset].texturemins[0] || t < surf[offset].texturemins[1]) { continue; } int ds = s - surf[offset].texturemins[0]; int dt = t - surf[offset].texturemins[1]; if (ds > surf[offset].extents[0] || dt > surf[offset].extents[1]) { continue; } if (surf[offset].sample_base == null) { return(0); } ds >>= 4; dt >>= 4; byte[] lightmap = surf[offset].sample_base; int lmOffset = surf[offset].sampleofs; short[] extents = surf[offset].extents; r = 0; if (lightmap != null) { lmOffset += dt * ((extents[0] >> 4) + 1) + ds; for (int maps = 0; maps < q_shared.MAXLIGHTMAPS && surf[offset].styles[maps] != 255; maps++) { int scale = d_lightstylevalue[surf[offset].styles[maps]]; r += lightmap[lmOffset] * scale; lmOffset += ((extents[0] >> 4) + 1) * ((extents[1] >> 4) + 1); } r >>= 8; } return(r); } // go down back side return(RecursiveLightPoint(n.children[side == 0 ? 1 : 0], ref mid, ref end)); }
public static void R_RecursiveWorldNode(mnodebase_t node) { if (node.contents == q_shared.CONTENTS_SOLID) { return; // solid } if (node.visframe != r_visframecount) { return; } if (R_CullBox(ref node.mins, ref node.maxs)) { return; } int c; // if a leaf node, draw stuff if (node.contents < 0) { mleaf_t pleaf = (mleaf_t)node; msurface_t[] marks = pleaf.marksurfaces; int mark = pleaf.firstmarksurface; c = pleaf.nummarksurfaces; if (c != 0) { do { marks[mark].visframe = r_framecount; mark++; } while (--c != 0); } // deal with model fragments in this leaf if (pleaf.efrags != null) { R_StoreEfrags(pleaf.efrags); } return; } // node is just a decision point, so go down the apropriate sides mnode_t n = (mnode_t)node; // find which side of the node we are on mplane_t plane = n.plane; double dot; switch (plane.type) { case q_shared.PLANE_X: dot = modelorg.X - plane.dist; break; case q_shared.PLANE_Y: dot = modelorg.Y - plane.dist; break; case q_shared.PLANE_Z: dot = modelorg.Z - plane.dist; break; default: dot = Vector3.Dot(modelorg, plane.normal) - plane.dist; break; } int side = (dot >= 0 ? 0 : 1); // recurse down the children, front side first R_RecursiveWorldNode(n.children[side]); // draw stuff c = n.numsurfaces; if (c != 0) { msurface_t[] surf = cl.worldmodel.surfaces; int offset = n.firstsurface; if (dot < 0 - q_shared.BACKFACE_EPSILON) { side = q_shared.SURF_PLANEBACK; } else if (dot > q_shared.BACKFACE_EPSILON) { side = 0; } for (; c != 0; c--, offset++) { if (surf[offset].visframe != r_framecount) { continue; } // don't backface underwater surfaces, because they warp if ((surf[offset].flags & q_shared.SURF_UNDERWATER) == 0 && ((dot < 0) ^ ((surf[offset].flags & q_shared.SURF_PLANEBACK) != 0))) { continue; // wrong side } // if sorting by texture, just store it out if (gl_texsort.value != 0) { if (!mirror || surf[offset].texinfo.texture != cl.worldmodel.textures[mirrortexturenum]) { surf[offset].texturechain = surf[offset].texinfo.texture.texturechain; surf[offset].texinfo.texture.texturechain = surf[offset]; } } else if ((surf[offset].flags & q_shared.SURF_DRAWSKY) != 0) { surf[offset].texturechain = skychain; skychain = surf[offset]; } else if ((surf[offset].flags & q_shared.SURF_DRAWTURB) != 0) { surf[offset].texturechain = waterchain; waterchain = surf[offset]; } else { R_DrawSequentialPoly(surf[offset]); } } } // recurse down the back side R_RecursiveWorldNode(n.children[side == 0 ? 1 : 0]); }
public static void R_SplitEntityOnNode(mnodebase_t node) { if (node.contents == q_shared.CONTENTS_SOLID) { return; } // add an efrag if the node is a leaf if (node.contents < 0) { if (r_pefragtopnode == null) { r_pefragtopnode = node as mnode_t; } mleaf_t leaf = (mleaf_t)(object)node; // grab an efrag off the free list efrag_t ef = cl.free_efrags; if (ef == null) { Con_Printf("Too many efrags!\n"); return; // no free fragments... } cl.free_efrags = cl.free_efrags.entnext; ef.entity = r_addent; // add the entity link // *lastlink = ef; if (_LastObj is entity_t) { ((entity_t)_LastObj).efrag = ef; } else { ((efrag_t)_LastObj).entnext = ef; } _LastObj = ef; // lastlink = &ef->entnext; ef.entnext = null; // set the leaf links ef.leaf = leaf; ef.leafnext = leaf.efrags; leaf.efrags = ef; return; } // NODE_MIXED mnode_t n = node as mnode_t; if (n == null) { return; } mplane_t splitplane = n.plane; int sides = Mathlib.BoxOnPlaneSide(ref r_emins, ref r_emaxs, splitplane); if (sides == 3) { // split on this plane // if this is the first splitter of this bmodel, remember it if (r_pefragtopnode == null) { r_pefragtopnode = n; } } // recurse down the contacted sides if ((sides & 1) != 0) { R_SplitEntityOnNode(n.children[0]); } if ((sides & 2) != 0) { R_SplitEntityOnNode(n.children[1]); } }