Exemple #1
0
        /// <summary>
        /// Evaluates the test results.
        /// </summary>
        /// <param name="testResults">Set of test results.</param>
        /// <param name="_testName">Descriptive name to be attached at results report.</param>
        /// <param name="logger">The logger - to log any problems, if occourred.</param>
        /// <param name="averagingMethod">The averaging method.</param>
        /// <returns></returns>
        public classificationReport EvaluateTestResults(List <FeatureVectorWithLabelID> testResults, String _testName, ILogBuilder logger, classificationMetricComputation averagingMethod = classificationMetricComputation.macroAveraging)
        {
            //classificationReport report = new classificationReport()

            classificationReport report = new classificationReport(_testName);

            classificationEvalMetricSet metric = EvaluateTestResultsToMetricSet(testResults, _testName, logger);

            report.GetSetMetrics(metric);
            report.AddValues(metric, averagingMethod);

            return(report);
        }
        /// <summary>
        /// Generates the final reports and read me files
        /// </summary>
        public void CloseExperiment(ILogBuilder logger, long startOfLog)
        {
            if (!testSummaries.Any())
            {
                logger.log("No experiment procedures performes");

                return;
            }
            DataTableTypeExtended <classificationReport> summaryTable = new DataTableTypeExtended <classificationReport>("Test results", "k-fold cross valudation results");

            classificationReport sumRow = new classificationReport(runName);

            sumRow.Comment = runName + ", " + description;


            //    classificationEvalMetricSet metric = new classificationEvalMetricSet("Total", truthTable.labels_without_unknown);

            foreach (classificationReport s in testSummaries)
            {
                summaryTable.AddRow(s);
                //metric = metric + s;

                if (sumRow.Classifier.isNullOrEmpty())
                {
                    sumRow.Classifier = s.Classifier;
                }

                sumRow.AddValues(s);
            }



            sumRow.DivideValues(testSummaries.Count);

            sumRow.SetReportDataFields(crossValidation, this);

            summaryTable.SetDescription(description);

            summaryTable.SetAdditionalInfoEntry("RunName", runName);
            summaryTable.SetAdditionalInfoEntry("Description", description);
            summaryTable.SetAdditionalInfoEntry("Averaging", averagingMethod.ToString());

            summaryTable.AddRow(sumRow);



            summaryTable.GetReportAndSave(notes.folder, signature);

            finalReport = sumRow;

            //sumRow.ReportToLog(logger);
            sumRow.ReportToLog(notes);

            objectSerialization.saveObjectToXML(sumRow, notes.folder.pathFor("results.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Experiment results", true));


            logger.log("Experiment completed");

            notes.SaveNote("note");

            String logPrintout = logger.GetContent(startOfLog);
            String p           = notes.folder.pathFor("log.txt", imbSCI.Data.enums.getWritableFileMode.overwrite, "Log printout during experiment execution");

            File.WriteAllText(p, logPrintout);

            experimentRootFolder.generateReadmeFiles(signature);
        }