Exemple #1
0
        public void calc_cap(IVertexDest vc, VertexDistance v0, VertexDistance v1, double len)
        {
            vc.remove_all();

            double dx1 = (v1.y - v0.y) / len;
            double dy1 = (v1.x - v0.x) / len;
            double dx2 = 0;
            double dy2 = 0;

            dx1 *= m_width;
            dy1 *= m_width;

            if (m_line_cap != LineCap.Round)
            {
                if (m_line_cap == LineCap.Square)
                {
                    dx2 = dy1 * m_width_sign;
                    dy2 = dx1 * m_width_sign;
                }
                add_vertex(vc, v0.x - dx1 - dx2, v0.y + dy1 - dy2);
                add_vertex(vc, v0.x + dx1 - dx2, v0.y - dy1 - dy2);
            }
            else
            {
                double da = Math.Acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
                double a1;
                int    i;
                int    n = (int)(Math.PI / da);

                da = Math.PI / (n + 1);
                add_vertex(vc, v0.x - dx1, v0.y + dy1);
                if (m_width_sign > 0)
                {
                    a1  = Math.Atan2(dy1, -dx1);
                    a1 += da;
                    for (i = 0; i < n; i++)
                    {
                        add_vertex(vc, v0.x + Math.Cos(a1) * m_width,
                                   v0.y + Math.Sin(a1) * m_width);
                        a1 += da;
                    }
                }
                else
                {
                    a1  = Math.Atan2(-dy1, dx1);
                    a1 -= da;
                    for (i = 0; i < n; i++)
                    {
                        add_vertex(vc, v0.x + Math.Cos(a1) * m_width,
                                   v0.y + Math.Sin(a1) * m_width);
                        a1 -= da;
                    }
                }
                add_vertex(vc, v0.x + dx1, v0.y - dy1);
            }
        }
Exemple #2
0
        public bool IsEqual(VertexDistance val)
        {
            bool ret = (dist = AggMath.calc_distance(x, y, val.x, val.y)) > AggMath.VERTEX_DISTANCE_EPSILON;

            if (!ret)
            {
                dist = 1.0 / AggMath.VERTEX_DISTANCE_EPSILON;
            }
            return(ret);
        }
Exemple #3
0
        public bool IsEqual(VertexDistance val)
        {
            bool ret = (dist = PictorMath.CalculateDistance(x, y, val.x, val.y)) > PictorMath.vertex_dist_epsilon;

            if (!ret)
            {
                dist = 1.0 / PictorMath.vertex_dist_epsilon;
            }
            return(ret);
        }
        public bool IsEqual(VertexDistance val)
        {
            bool ret = (dist = agg_math.calc_distance(x, y, val.x, val.y)) > agg_math.vertex_dist_epsilon;

            if (!ret)
            {
                dist = 1.0 / agg_math.vertex_dist_epsilon;
            }
            return(ret);
        }
 public static void ShortenPath(VertexDistanceList vertexDistanceList, double s, bool closed)
 {
     if (s > 0.0 && vertexDistanceList.Count > 1)
     {
         double d;
         int    n = (int)(vertexDistanceList.Count - 2);
         while (n != 0)
         {
             d = vertexDistanceList[n].dist;
             if (d > s)
             {
                 break;
             }
             vertexDistanceList.RemoveLast();
             s -= d;
             --n;
         }
         if (vertexDistanceList.Count < 2)
         {
             vertexDistanceList.Clear();
         }
         else
         {
             n = (int)vertexDistanceList.Count - 1;
             VertexDistance prev = vertexDistanceList[n - 1];
             VertexDistance last = vertexDistanceList[n];
             d = (prev.dist - s) / prev.dist;
             double x = prev.x + (last.x - prev.x) * d;
             double y = prev.y + (last.y - prev.y) * d;
             last.x = x;
             last.y = y;
             if (!prev.IsEqual(last))
             {
                 vertexDistanceList.RemoveLast();
             }
             vertexDistanceList.Close(closed);
         }
     }
 }
Exemple #6
0
        void CalculateMiter(IVertexDest vc,
						VertexDistance v0,
						VertexDistance v1,
						VertexDistance v2,
						double dx1, double dy1,
						double dx2, double dy2,
						ELineJoin lj,
						double mlimit,
						double dbevel)
        {
            double xi = v1.x;
            double yi = v1.y;
            double di = 1;
            double lim = m_width_abs * mlimit;
            bool miter_limit_exceeded = true; // Assume the worst
            bool intersection_failed = true; // Assume the worst

            if (PictorMath.CalculateIntersection(v0.x + dx1, v0.y - dy1,
                                 v1.x + dx1, v1.y - dy1,
                                 v1.x + dx2, v1.y - dy2,
                                 v2.x + dx2, v2.y - dy2,
                                 out xi, out yi))
            {
                // Calculation of the intersection succeeded
                //---------------------
                di = PictorMath.CalculateDistance(v1.x, v1.y, xi, yi);
                if (di <= lim)
                {
                    // Inside the miter limit
                    //---------------------
                    AddVertex(vc, xi, yi);
                    miter_limit_exceeded = false;
                }
                intersection_failed = false;
            }
            else
            {
                // Calculation of the intersection failed, most probably
                // the three points lie one straight Line.
                // First check if v0 and v2 lie on the opposite sides of vector:
                // (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
                // to the Line determined by vertices v0 and v1.
                // This condition determines whether the next Line segments continues
                // the previous one or goes back.
                //----------------
                double x2 = v1.x + dx1;
                double y2 = v1.y - dy1;
                if ((PictorMath.CrossProduct(v0.x, v0.y, v1.x, v1.y, x2, y2) < 0.0) ==
                   (PictorMath.CrossProduct(v1.x, v1.y, v2.x, v2.y, x2, y2) < 0.0))
                {
                    // This case means that the next segment continues
                    // the previous one (straight Line)
                    //-----------------
                    AddVertex(vc, v1.x + dx1, v1.y - dy1);
                    miter_limit_exceeded = false;
                }
            }

            if (miter_limit_exceeded)
            {
                // Miter limit exceeded
                //------------------------
                switch (lj)
                {
                    case ELineJoin.miter_join_revert:
                        // For the compatibility with SVG, PDF, etc,
                        // we use a simple bevel join instead of
                        // "smart" bevel
                        //-------------------
                        AddVertex(vc, v1.x + dx1, v1.y - dy1);
                        AddVertex(vc, v1.x + dx2, v1.y - dy2);
                        break;

                    case ELineJoin.miter_join_round:
                        CalculateArc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
                        break;

                    default:
                        // If no miter-revert, Calculate new dx1, dy1, dx2, dy2
                        //----------------
                        if (intersection_failed)
                        {
                            mlimit *= m_width_sign;
                            AddVertex(vc, v1.x + dx1 + dy1 * mlimit,
                                           v1.y - dy1 + dx1 * mlimit);
                            AddVertex(vc, v1.x + dx2 - dy2 * mlimit,
                                           v1.y - dy2 - dx2 * mlimit);
                        }
                        else
                        {
                            double x1 = v1.x + dx1;
                            double y1 = v1.y - dy1;
                            double x2 = v1.x + dx2;
                            double y2 = v1.y - dy2;
                            di = (lim - dbevel) / (di - dbevel);
                            AddVertex(vc, x1 + (xi - x1) * di,
                                           y1 + (yi - y1) * di);
                            AddVertex(vc, x2 + (xi - x2) * di,
                                           y2 + (yi - y2) * di);
                        }
                        break;
                }
            }
        }
Exemple #7
0
        public void CaluclateCap(IVertexDest vc, VertexDistance v0, VertexDistance v1, double len)
        {
            vc.RemoveAll();

            double dx1 = (v1.y - v0.y) / len;
            double dy1 = (v1.x - v0.x) / len;
            double dx2 = 0;
            double dy2 = 0;

            dx1 *= m_width;
            dy1 *= m_width;

            if (m_line_cap != ELineCap.round_cap)
            {
                if (m_line_cap == ELineCap.square_cap)
                {
                    dx2 = dy1 * m_width_sign;
                    dy2 = dx1 * m_width_sign;
                }
                AddVertex(vc, v0.x - dx1 - dx2, v0.y + dy1 - dy2);
                AddVertex(vc, v0.x + dx1 - dx2, v0.y - dy1 - dy2);
            }
            else
            {
                double da = Math.Acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
                double a1;
                int i;
                int n = (int)(Math.PI / da);

                da = Math.PI / (n + 1);
                AddVertex(vc, v0.x - dx1, v0.y + dy1);
                if (m_width_sign > 0)
                {
                    a1 = Math.Atan2(dy1, -dx1);
                    a1 += da;
                    for (i = 0; i < n; i++)
                    {
                        AddVertex(vc, v0.x + Math.Cos(a1) * m_width,
                                       v0.y + Math.Sin(a1) * m_width);
                        a1 += da;
                    }
                }
                else
                {
                    a1 = Math.Atan2(-dy1, dx1);
                    a1 -= da;
                    for (i = 0; i < n; i++)
                    {
                        AddVertex(vc, v0.x + Math.Cos(a1) * m_width,
                                       v0.y + Math.Sin(a1) * m_width);
                        a1 -= da;
                    }
                }
                AddVertex(vc, v0.x + dx1, v0.y - dy1);
            }
        }
Exemple #8
0
        public void CalculateJoin(IVertexDest vc, VertexDistance v0,
										VertexDistance v1,
										VertexDistance v2,
										double len1,
										double len2)
        {
            double dx1 = m_width * (v1.y - v0.y) / len1;
            double dy1 = m_width * (v1.x - v0.x) / len1;
            double dx2 = m_width * (v2.y - v1.y) / len2;
            double dy2 = m_width * (v2.x - v1.x) / len2;

            vc.RemoveAll();

            double cp = PictorMath.CrossProduct(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y);
            if (cp != 0 && (cp > 0) == (m_width > 0))
            {
                // Inner join
                //---------------
                double limit = ((len1 < len2) ? len1 : len2) / m_width_abs;
                if (limit < m_inner_miter_limit)
                {
                    limit = m_inner_miter_limit;
                }

                switch (m_inner_join)
                {
                    default: // inner_bevel
                        AddVertex(vc, v1.x + dx1, v1.y - dy1);
                        AddVertex(vc, v1.x + dx2, v1.y - dy2);
                        break;

                    case EInnerJoin.inner_miter:
                        CalculateMiter(vc,
                                   v0, v1, v2, dx1, dy1, dx2, dy2,
                                   ELineJoin.miter_join_revert,
                                   limit, 0);
                        break;

                    case EInnerJoin.inner_jag:
                    case EInnerJoin.inner_round:
                        cp = (dx1 - dx2) * (dx1 - dx2) + (dy1 - dy2) * (dy1 - dy2);
                        if (cp < len1 * len1 && cp < len2 * len2)
                        {
                            CalculateMiter(vc,
                                       v0, v1, v2, dx1, dy1, dx2, dy2,
                                       ELineJoin.miter_join_revert,
                                       limit, 0);
                        }
                        else
                        {
                            if (m_inner_join == EInnerJoin.inner_jag)
                            {
                                AddVertex(vc, v1.x + dx1, v1.y - dy1);
                                AddVertex(vc, v1.x, v1.y);
                                AddVertex(vc, v1.x + dx2, v1.y - dy2);
                            }
                            else
                            {
                                AddVertex(vc, v1.x + dx1, v1.y - dy1);
                                AddVertex(vc, v1.x, v1.y);
                                CalculateArc(vc, v1.x, v1.y, dx2, -dy2, dx1, -dy1);
                                AddVertex(vc, v1.x, v1.y);
                                AddVertex(vc, v1.x + dx2, v1.y - dy2);
                            }
                        }
                        break;
                }
            }
            else
            {
                // Outer join
                //---------------

                // Calculate the distance between v1 and
                // the central point of the bevel Line segment
                //---------------
                double dx = (dx1 + dx2) / 2;
                double dy = (dy1 + dy2) / 2;
                double dbevel = Math.Sqrt(dx * dx + dy * dy);

                if (m_line_join == ELineJoin.round_join || m_line_join == ELineJoin.bevel_join)
                {
                    // This is an optimization that reduces the number of points
                    // in cases of almost collinear segments. If there's no
                    // visible difference between bevel and miter joins we'd rather
                    // use miter join because it adds only one point instead of two.
                    //
                    // Here we Calculate the middle point between the bevel points
                    // and then, the distance between v1 and this middle point.
                    // At outer joins this distance always less than stroke Width,
                    // because it's actually the Height of an isosceles triangle of
                    // v1 and its two bevel points. If the difference between this
                    // Width and this Value is small (no visible bevel) we can
                    // Add just one point.
                    //
                    // The constant in the expression makes the result approximately
                    // the same as in round joins and caps. You can safely comment
                    // out this entire "if".
                    //-------------------
                    if (m_approx_scale * (m_width_abs - dbevel) < m_width_eps)
                    {
                        if (PictorMath.CalculateIntersection(v0.x + dx1, v0.y - dy1,
                                             v1.x + dx1, v1.y - dy1,
                                             v1.x + dx2, v1.y - dy2,
                                             v2.x + dx2, v2.y - dy2,
                                             out dx, out dy))
                        {
                            AddVertex(vc, dx, dy);
                        }
                        else
                        {
                            AddVertex(vc, v1.x + dx1, v1.y - dy1);
                        }
                        return;
                    }
                }

                switch (m_line_join)
                {
                    case ELineJoin.miter_join:
                    case ELineJoin.miter_join_revert:
                    case ELineJoin.miter_join_round:
                        CalculateMiter(vc,
                                   v0, v1, v2, dx1, dy1, dx2, dy2,
                                   m_line_join,
                                   m_miter_limit,
                                   dbevel);
                        break;

                    case ELineJoin.round_join:
                        CalculateArc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
                        break;

                    default: // Bevel join
                        AddVertex(vc, v1.x + dx1, v1.y - dy1);
                        AddVertex(vc, v1.x + dx2, v1.y - dy2);
                        break;
                }
            }
        }
Exemple #9
0
        private void calc_miter(IVertexDest vc,
                                VertexDistance v0,
                                VertexDistance v1,
                                VertexDistance v2,
                                double dx1, double dy1,
                                double dx2, double dy2,
                                LineJoin lj,
                                double mlimit,
                                double dbevel)
        {
            double xi  = v1.x;
            double yi  = v1.y;
            double di  = 1;
            double lim = m_width_abs * mlimit;
            bool   miter_limit_exceeded = true;          // Assume the worst
            bool   intersection_failed  = true;          // Assume the worst

            if (agg_math.calc_intersection(v0.x + dx1, v0.y - dy1,
                                           v1.x + dx1, v1.y - dy1,
                                           v1.x + dx2, v1.y - dy2,
                                           v2.x + dx2, v2.y - dy2,
                                           out xi, out yi))
            {
                // Calculation of the intersection succeeded
                //---------------------
                di = agg_math.calc_distance(v1.x, v1.y, xi, yi);
                if (di <= lim)
                {
                    // Inside the miter limit
                    //---------------------
                    add_vertex(vc, xi, yi);
                    miter_limit_exceeded = false;
                }
                intersection_failed = false;
            }
            else
            {
                // Calculation of the intersection failed, most probably
                // the three points lie one straight line.
                // First check if v0 and v2 lie on the opposite sides of vector:
                // (v1.x, v1.y) -> (v1.x+dx1, v1.y-dy1), that is, the perpendicular
                // to the line determined by vertices v0 and v1.
                // This condition determines whether the next line segments continues
                // the previous one or goes back.
                //----------------
                double x2 = v1.x + dx1;
                double y2 = v1.y - dy1;
                if ((agg_math.cross_product(v0.x, v0.y, v1.x, v1.y, x2, y2) < 0.0) ==
                    (agg_math.cross_product(v1.x, v1.y, v2.x, v2.y, x2, y2) < 0.0))
                {
                    // This case means that the next segment continues
                    // the previous one (straight line)
                    //-----------------
                    add_vertex(vc, v1.x + dx1, v1.y - dy1);
                    miter_limit_exceeded = false;
                }
            }

            if (miter_limit_exceeded)
            {
                // Miter limit exceeded
                //------------------------
                switch (lj)
                {
                case LineJoin.MiterRevert:
                    // For the compatibility with SVG, PDF, etc,
                    // we use a simple bevel join instead of
                    // "smart" bevel
                    //-------------------
                    add_vertex(vc, v1.x + dx1, v1.y - dy1);
                    add_vertex(vc, v1.x + dx2, v1.y - dy2);
                    break;

                case LineJoin.MiterRound:
                    calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
                    break;

                default:
                    // If no miter-revert, calculate new dx1, dy1, dx2, dy2
                    //----------------
                    if (intersection_failed)
                    {
                        mlimit *= m_width_sign;
                        add_vertex(vc, v1.x + dx1 + dy1 * mlimit,
                                   v1.y - dy1 + dx1 * mlimit);
                        add_vertex(vc, v1.x + dx2 - dy2 * mlimit,
                                   v1.y - dy2 - dx2 * mlimit);
                    }
                    else
                    {
                        double x1 = v1.x + dx1;
                        double y1 = v1.y - dy1;
                        double x2 = v1.x + dx2;
                        double y2 = v1.y - dy2;
                        di = (lim - dbevel) / (di - dbevel);
                        add_vertex(vc, x1 + (xi - x1) * di,
                                   y1 + (yi - y1) * di);
                        add_vertex(vc, x2 + (xi - x2) * di,
                                   y2 + (yi - y2) * di);
                    }
                    break;
                }
            }
        }
Exemple #10
0
        public void calc_join(IVertexDest vc, VertexDistance v0,
                              VertexDistance v1,
                              VertexDistance v2,
                              double len1,
                              double len2)
        {
            double dx1 = m_width * (v1.y - v0.y) / len1;
            double dy1 = m_width * (v1.x - v0.x) / len1;
            double dx2 = m_width * (v2.y - v1.y) / len2;
            double dy2 = m_width * (v2.x - v1.x) / len2;

            vc.remove_all();

            double cp = agg_math.cross_product(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y);

            if (cp != 0 && (cp > 0) == (m_width > 0))
            {
                // Inner join
                //---------------
                double limit = ((len1 < len2) ? len1 : len2) / m_width_abs;
                if (limit < m_inner_miter_limit)
                {
                    limit = m_inner_miter_limit;
                }

                switch (m_inner_join)
                {
                default:                         // inner_bevel
                    add_vertex(vc, v1.x + dx1, v1.y - dy1);
                    add_vertex(vc, v1.x + dx2, v1.y - dy2);
                    break;

                case InnerJoin.Miter:
                    calc_miter(vc,
                               v0, v1, v2, dx1, dy1, dx2, dy2,
                               LineJoin.MiterRevert,
                               limit, 0);
                    break;

                case InnerJoin.Jag:
                case InnerJoin.Round:
                    cp = (dx1 - dx2) * (dx1 - dx2) + (dy1 - dy2) * (dy1 - dy2);
                    if (cp < len1 * len1 && cp < len2 * len2)
                    {
                        calc_miter(vc,
                                   v0, v1, v2, dx1, dy1, dx2, dy2,
                                   LineJoin.MiterRevert,
                                   limit, 0);
                    }
                    else
                    {
                        if (m_inner_join == InnerJoin.Jag)
                        {
                            add_vertex(vc, v1.x + dx1, v1.y - dy1);
                            add_vertex(vc, v1.x, v1.y);
                            add_vertex(vc, v1.x + dx2, v1.y - dy2);
                        }
                        else
                        {
                            add_vertex(vc, v1.x + dx1, v1.y - dy1);
                            add_vertex(vc, v1.x, v1.y);
                            calc_arc(vc, v1.x, v1.y, dx2, -dy2, dx1, -dy1);
                            add_vertex(vc, v1.x, v1.y);
                            add_vertex(vc, v1.x + dx2, v1.y - dy2);
                        }
                    }
                    break;
                }
            }
            else
            {
                // Outer join
                //---------------

                // Calculate the distance between v1 and
                // the central point of the bevel line segment
                //---------------
                double dx     = (dx1 + dx2) / 2;
                double dy     = (dy1 + dy2) / 2;
                double dbevel = Math.Sqrt(dx * dx + dy * dy);

                if (m_line_join == LineJoin.Round || m_line_join == LineJoin.Bevel)
                {
                    // This is an optimization that reduces the number of points
                    // in cases of almost collinear segments. If there's no
                    // visible difference between bevel and miter joins we'd rather
                    // use miter join because it adds only one point instead of two.
                    //
                    // Here we calculate the middle point between the bevel points
                    // and then, the distance between v1 and this middle point.
                    // At outer joins this distance always less than stroke width,
                    // because it's actually the height of an isosceles triangle of
                    // v1 and its two bevel points. If the difference between this
                    // width and this value is small (no visible bevel) we can
                    // add just one point.
                    //
                    // The constant in the expression makes the result approximately
                    // the same as in round joins and caps. You can safely comment
                    // out this entire "if".
                    //-------------------
                    if (m_approx_scale * (m_width_abs - dbevel) < m_width_eps)
                    {
                        if (agg_math.calc_intersection(v0.x + dx1, v0.y - dy1,
                                                       v1.x + dx1, v1.y - dy1,
                                                       v1.x + dx2, v1.y - dy2,
                                                       v2.x + dx2, v2.y - dy2,
                                                       out dx, out dy))
                        {
                            add_vertex(vc, dx, dy);
                        }
                        else
                        {
                            add_vertex(vc, v1.x + dx1, v1.y - dy1);
                        }
                        return;
                    }
                }

                switch (m_line_join)
                {
                case LineJoin.Miter:
                case LineJoin.MiterRevert:
                case LineJoin.MiterRound:
                    calc_miter(vc,
                               v0, v1, v2, dx1, dy1, dx2, dy2,
                               m_line_join,
                               m_miter_limit,
                               dbevel);
                    break;

                case LineJoin.Round:
                    calc_arc(vc, v1.x, v1.y, dx1, -dy1, dx2, -dy2);
                    break;

                default:                         // Bevel join
                    add_vertex(vc, v1.x + dx1, v1.y - dy1);
                    add_vertex(vc, v1.x + dx2, v1.y - dy2);
                    break;
                }
            }
        }
Exemple #11
0
 public void CreateCap(VertexStore output, VertexDistance v0, VertexDistance v1, double len)
 {
     output.Clear();
     double dx1 = (v1.y - v0.y) / len;
     double dy1 = (v1.x - v0.x) / len;
     double dx2 = 0;
     double dy2 = 0;
     dx1 *= m_width;
     dy1 *= m_width;
     if (m_line_cap != LineCap.Round)
     {
         if (m_line_cap == LineCap.Square)
         {
             dx2 = dy1 * m_width_sign;
             dy2 = dx1 * m_width_sign;
         }
         AddVertex(output, v0.x - dx1 - dx2, v0.y + dy1 - dy2);
         AddVertex(output, v0.x + dx1 - dx2, v0.y - dy1 - dy2);
     }
     else
     {
         double da = Math.Acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
         double a1;
         int i;
         int n = (int)(Math.PI / da);
         da = Math.PI / (n + 1);
         AddVertex(output, v0.x - dx1, v0.y + dy1);
         if (m_width_sign > 0)
         {
             a1 = Math.Atan2(dy1, -dx1);
             a1 += da;
             for (i = 0; i < n; i++)
             {
                 AddVertex(output, v0.x + Math.Cos(a1) * m_width,
                                v0.y + Math.Sin(a1) * m_width);
                 a1 += da;
             }
         }
         else
         {
             a1 = Math.Atan2(-dy1, dx1);
             a1 -= da;
             for (i = 0; i < n; i++)
             {
                 AddVertex(output, v0.x + Math.Cos(a1) * m_width,
                                v0.y + Math.Sin(a1) * m_width);
                 a1 -= da;
             }
         }
         AddVertex(output, v0.x + dx1, v0.y - dy1);
     }
 }