Exemple #1
0
        public UnorderedMapVariableValuePtr GetVariableValueMapAsCNTKUnorderedMap(Minibatch batch)
        {
            var arguments = GetVariableValueMap(batch);
            var map       = new UnorderedMapVariableValuePtr();

            foreach (var entry in arguments)
            {
                map.Add(entry.Key, entry.Value);
            }

            return(map);
        }
Exemple #2
0
        public static void Evaluate(this Function func, Dictionary<Variable, Value> arguments, Dictionary<Variable, Value> outputs, DeviceDescriptor computeDevice)
        {
            // Evaluate the rootFunction.
            var argMap = new UnorderedMapVariableValuePtr();
            foreach (var p in arguments)
            {
                argMap.Add(p.Key, p.Value);
            }

            var outMap = new UnorderedMapVariableValuePtr();
            foreach (var p in outputs)
            {
                outMap.Add(p.Key, p.Value);
            }

            func.Evaluate(argMap, outMap, computeDevice);

            foreach (var p in outMap)
            {
                outputs[p.Key] = p.Value;
            }
        }
Exemple #3
0
        public static void EvaluateV2ModelUsingNDView()
        {
            // Load the model
            var myFunc = Function.LoadModel("z.model");

            // Ouput funciton info.
            OutputFunctionInfo(myFunc);

            // prepare input for evaluation
            uint numOfSamples = 1;

            // The z.model has only one input
            var inputVar = myFunc.Arguments.Single();
            // Todo: get size directly from inputVar.
            uint numOfInputData = inputVar.Shape.TotalSize * numOfSamples;

            float[] inputData = new float[numOfInputData];
            for (uint i = 0; i < numOfInputData; ++i)
            {
                inputData[i] = (float)(i % 255);
            }

            // Todo: create value directly from data.
            var dynamicAxisShape = new SizeTVector()
            {
                1, numOfSamples
            };
            var inputShape       = inputVar.Shape.AppendShape(new NDShape(dynamicAxisShape));
            var inputNDArrayView = new NDArrayView(inputShape, inputData, numOfInputData, DeviceDescriptor.CPUDevice);
            var inputValue       = new Value(inputNDArrayView);

            // Create input map
            // Todo: create a Dictionary wrapper?
            var inputMap = new UnorderedMapVariableValuePtr();

            inputMap.Add(inputVar, inputValue);

            // The z.model has only one output.
            var outputVar   = myFunc.Output;
            var outputShape = outputVar.Shape.AppendShape(new NDShape(dynamicAxisShape));

            // Create output buffer
            // Todo: use the system created buffer?
            uint numOfOutputData = outputVar.Shape.TotalSize * numOfSamples;

            float[] outputData = new float[numOfOutputData];
            for (uint i = 0; i < numOfOutputData; ++i)
            {
                outputData[i] = (float)0.0;
            }
            var outputNDArrayView = new NDArrayView(outputShape, outputData, numOfOutputData, DeviceDescriptor.CPUDevice);
            var outputValue       = new Value(outputNDArrayView);

            // Create ouput map
            var outputMap = new UnorderedMapVariableValuePtr();

            outputMap.Add(outputVar, outputValue);

            // Evalaute
            // Todo: test on GPUDevice()?
            myFunc.Evaluate(inputMap, outputMap, DeviceDescriptor.CPUDevice);

            // Output results
            Console.WriteLine("Evaluation results:");
            for (uint i = 0; i < numOfOutputData; ++i)
            {
                Console.WriteLine(outputData[i]);
            }
        }
Exemple #4
0
        public static void EvaluateUsingCreateValue()
        {
            // Load the model
            var myFunc = Function.LoadModel("01_OneHidden");

            // Ouput funciton info.
            OutputFunctionInfo(myFunc);

            // prepare input for evaluation
            uint numOfSamples = 1;

            const string inputNodeName = "features";
            var          inputVar      = myFunc.Arguments.Where(variable => string.Equals(variable.Name, inputNodeName)).Single();
            // Todo: get size directly from inputVar.
            uint numOfInputData = inputVar.Shape.TotalSize;
            var  inputData      = new List <float>();

            for (uint i = 0; i < numOfInputData; ++i)
            {
                inputData.Add(i % 255);
            }

            var inputVector = new FloatVector(inputData);
            var data        = new FloatVectorVector()
            {
                inputVector
            };
            // Create value directly from data.
            var inputValue = Value.CreateDenseFloat(inputVar.Shape, data, DeviceDescriptor.CPUDevice);

            // Create input map
            // Todo: create a Dictionary wrapper?
            var inputMap = new UnorderedMapVariableValuePtr();

            inputMap.Add(inputVar, inputValue);

            // Prepare output
            const string outputNodeName = "out.z_output";
            var          outputVar      = myFunc.Outputs.Where(variable => string.Equals(variable.Name, outputNodeName)).Single();

            // Create ouput map. Using null as Value to indicate using system allocated memory.
            var outputMap = new UnorderedMapVariableValuePtr();

            outputMap.Add(outputVar, null);

            // Evalaute
            // Todo: test on GPUDevice()?
            myFunc.Evaluate(inputMap, outputMap, DeviceDescriptor.CPUDevice);

            // Get output value after evaluation
            var outputValue       = outputMap[outputVar];
            var outputNDArrayView = outputValue.Data();

            var dynamicAxisShape = new SizeTVector()
            {
                1, numOfSamples
            };
            var outputShape = outputVar.Shape.AppendShape(new NDShape(dynamicAxisShape));

            // Copy the data from the output buffer.
            // Todo: directly access the data in output buffer if it is on CPU?
            uint numOfOutputData = outputNDArrayView.Shape().TotalSize;

            float[] outputData           = new float[numOfOutputData];
            var     cpuOutputNDArrayView = new NDArrayView(outputShape, outputData, numOfOutputData, DeviceDescriptor.CPUDevice);

            cpuOutputNDArrayView.CopyFrom(outputNDArrayView);

            // Output results
            Console.WriteLine("Evaluation results:");
            for (uint i = 0; i < numOfOutputData; ++i)
            {
                Console.WriteLine(outputData[i]);
            }
        }
Exemple #5
0
        public static void EvaluateUsingSystemAllocatedMemory()
        {
            // Load the model
            var myFunc = Function.LoadModel("z.model");

            // Ouput funciton info.
            OutputFunctionInfo(myFunc);

            // prepare input for evaluation
            uint numOfSamples = 1;

            // Only one input for the model.
            var inputVar = myFunc.Arguments.First();
            // Todo: get size directly from inputVar.
            uint numOfInputData = inputVar.Shape.TotalSize * numOfSamples;

            float[] inputData = new float[numOfInputData];
            for (uint i = 0; i < numOfInputData; ++i)
            {
                inputData[i] = (float)(i % 255);
            }

            // Todo: create value directly from data.
            var dynamicAxisShape = new SizeTVector()
            {
                1, numOfSamples
            };
            var inputShape       = inputVar.Shape.AppendShape(new NDShape(dynamicAxisShape));
            var inputNDArrayView = new NDArrayView(inputShape, inputData, numOfInputData, DeviceDescriptor.CPUDevice);
            var inputValue       = new Value(inputNDArrayView);

            // Create input map
            // Todo: create a Dictionary wrapper?
            var inputMap = new UnorderedMapVariableValuePtr();

            inputMap.Add(inputVar, inputValue);

            // Prepare output. The model has only one output.
            var outputVar = myFunc.Output;

            // Create ouput map. Using null as Value to indicate using system allocated memory.
            var outputMap = new UnorderedMapVariableValuePtr();

            outputMap.Add(outputVar, null);

            // Evalaute
            // Todo: test on GPUDevice()?
            myFunc.Evaluate(inputMap, outputMap, DeviceDescriptor.CPUDevice);

            // Get output value after evaluation
            var outputValue       = outputMap[outputVar];
            var outputNDArrayView = outputValue.Data();
            var outputShape       = outputVar.Shape.AppendShape(new NDShape(dynamicAxisShape));

            // Copy the data from the output buffer.
            // Todo: directly access the data in output buffer if it is on CPU?
            uint numOfOutputData = outputNDArrayView.Shape().TotalSize;

            float[] outputData           = new float[numOfOutputData];
            var     cpuOutputNDArrayView = new NDArrayView(outputShape, outputData, numOfOutputData, DeviceDescriptor.CPUDevice);

            cpuOutputNDArrayView.CopyFrom(outputNDArrayView);

            // Output results
            Console.WriteLine("Evaluation results:");
            for (uint i = 0; i < numOfOutputData; ++i)
            {
                Console.WriteLine(outputData[i]);
            }
        }