public void SquareRandomMatrixQRDecomposition()
        {
            for (int d = 1; d <= 100; d += 11)
            {
                Console.WriteLine("d={0}", d);

                SquareMatrix M = CreateSquareRandomMatrix(d);

                // QR decompose the matrix.
                SquareQRDecomposition QRD = M.QRDecomposition();

                // The dimension should be right.
                Assert.IsTrue(QRD.Dimension == M.Dimension);

                // Test that the decomposition works.
                SquareMatrix Q = QRD.QMatrix;
                SquareMatrix R = QRD.RMatrix;
                Assert.IsTrue(TestUtilities.IsNearlyEqual(Q * R, M));

                // Check that the inverse works.
                SquareMatrix MI = QRD.Inverse();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * MI, UnitMatrix.OfDimension(d)));

                // Test that a solution works.
                ColumnVector t = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    t[i] = i;
                }
                ColumnVector s = QRD.Solve(t);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * s, t));
            }
        }
        public void SquareRandomMatrixLUDecomposition()
        {
            for (int d = 1; d <= 256; d += 11)
            {
                SquareMatrix M = CreateSquareRandomMatrix(d);

                // LU decompose the matrix
                //Stopwatch sw = Stopwatch.StartNew();
                LUDecomposition LU = M.LUDecomposition();
                //sw.Stop();
                //Console.WriteLine(sw.ElapsedMilliseconds);

                Assert.IsTrue(LU.Dimension == d);

                // test that the decomposition works
                SquareMatrix P = LU.PMatrix();
                SquareMatrix L = LU.LMatrix();
                SquareMatrix U = LU.UMatrix();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(P * M, L * U));

                // check that the inverse works
                SquareMatrix MI = LU.Inverse();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * MI, UnitMatrix.OfDimension(d)));

                // test that a solution works
                ColumnVector t = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    t[i] = i;
                }
                ColumnVector s = LU.Solve(t);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * s, t));
            }
        }
Exemple #3
0
        public void UnitMatrixArithmetic()
        {
            SquareMatrix A = new SquareMatrix(new double[, ] {
                { 1.0, -2.0 },
                { -3.0, 4.0 }
            });
            SquareMatrix AI = A * UnitMatrix.OfDimension(A.Dimension);

            Assert.IsTrue(A == AI);
            SquareMatrix IA = UnitMatrix.OfDimension(A.Dimension) * A;

            Assert.IsTrue(IA == A);

            ColumnVector c  = new ColumnVector(1.0, 2.0, 3.0);
            ColumnVector Ic = UnitMatrix.OfDimension(c.Dimension) * c;

            Assert.IsTrue(Ic == c);

            RowVector r  = new RowVector(0.0, 1.0);
            RowVector rI = r * UnitMatrix.OfDimension(r.Dimension);

            Assert.IsTrue(rI == r);

            Assert.IsTrue(UnitMatrix.OfDimension(A.Dimension) == UnitMatrix.OfDimension(A.Dimension));

            Assert.IsTrue(0.0 * UnitMatrix.OfDimension(3) == UnitMatrix.OfDimension(3) - UnitMatrix.OfDimension(3));

            Assert.IsTrue(1.0 * UnitMatrix.OfDimension(3) == UnitMatrix.OfDimension(3));

            Assert.IsTrue(2.0 * UnitMatrix.OfDimension(3) == UnitMatrix.OfDimension(3) + UnitMatrix.OfDimension(3));
        }
        public void SquareUnitMatrixEigensystem()
        {
            int          d = 3;
            SquareMatrix I = UnitMatrix.OfDimension(d).ToSquareMatrix();
            ComplexEigendecomposition E = I.Eigendecomposition();

            Assert.IsTrue(E.Dimension == d);
            for (int i = 0; i < d; i++)
            {
                Complex val = E.Eigenpairs[i].Eigenvalue;
                Assert.IsTrue(val == 1.0);
                ComplexColumnVector vec = E.Eigenpairs[i].Eigenvector;
                for (int j = 0; j < d; j++)
                {
                    if (i == j)
                    {
                        Assert.IsTrue(vec[j] == 1.0);
                    }
                    else
                    {
                        Assert.IsTrue(vec[j] == 0.0);
                    }
                }
            }
        }
 public void SquareVandermondeMatrixInverse()
 {
     for (int d = 1; d < 8; d++)
     {
         SquareMatrix H  = CreateVandermondeMatrix(d);
         SquareMatrix HI = H.Inverse();
         Assert.IsTrue(TestUtilities.IsNearlyEqual(H * HI, UnitMatrix.OfDimension(d)));
     }
 }
Exemple #6
0
        public void UnitMatrixImmutable()
        {
            UnitMatrix I = UnitMatrix.OfDimension(2);

            try {
                I[0, 0] += 1.0;
                Assert.Fail();
            } catch (InvalidOperationException) { }
        }
Exemple #7
0
 public void SymmetricRandomMatrixInverse()
 {
     for (int d = 1; d <= 100; d = d + 11)
     {
         SymmetricMatrix M  = TestUtilities.CreateSymmetricRandomMatrix(d, 1);
         SymmetricMatrix MI = M.Inverse();
         Assert.IsTrue(TestUtilities.IsNearlyEqual(MI * M, UnitMatrix.OfDimension(d)));
     }
 }
Exemple #8
0
 public void SymmetricHilbertMatrixInverse()
 {
     for (int d = 1; d < 4; d++)
     {
         SymmetricMatrix H  = TestUtilities.CreateSymmetricHilbertMatrix(d);
         SymmetricMatrix HI = H.Inverse();
         Assert.IsTrue(TestUtilities.IsNearlyEqual(HI * H, UnitMatrix.OfDimension(d)));
     }
     // fails for d >= 4; look into this
 }
Exemple #9
0
        public void UnitMatrixNorms()
        {
            UnitMatrix   I = UnitMatrix.OfDimension(4);
            SquareMatrix A = I.ToSquareMatrix();

            Assert.IsTrue(I.OneNorm() == A.OneNorm());
            Assert.IsTrue(I.InfinityNorm() == A.InfinityNorm());
            Assert.IsTrue(I.FrobeniusNorm() == A.FrobeniusNorm());
            Assert.IsTrue(I.MaxNorm() == A.MaxNorm());
        }
 public void SquareUnitMatrixLUDecomposition()
 {
     for (int d = 1; d <= 10; d++)
     {
         SquareMatrix I = UnitMatrix.OfDimension(d).ToSquareMatrix();
         Assert.IsTrue(I.Trace() == d);
         LUDecomposition LU = I.LUDecomposition();
         Assert.IsTrue(LU.Determinant() == 1.0);
         SquareMatrix II = LU.Inverse();
         Assert.IsTrue(TestUtilities.IsNearlyEqual(II, I));
     }
 }
Exemple #11
0
        public static void VectorsAndMatrices()
        {
            ColumnVector v = new ColumnVector(0.0, 1.0, 2.0);
            ColumnVector w = new ColumnVector(new double[] { 1.0, -0.5, 1.5 });

            SquareMatrix A = new SquareMatrix(new double[, ] {
                { 1, -2, 3 },
                { 2, -5, 12 },
                { 0, 2, -10 }
            });

            RowVector u = new RowVector(4);

            for (int i = 0; i < u.Dimension; i++)
            {
                u[i] = i;
            }

            Random            rng = new Random(1);
            RectangularMatrix B   = new RectangularMatrix(4, 3);

            for (int r = 0; r < B.RowCount; r++)
            {
                for (int c = 0; c < B.ColumnCount; c++)
                {
                    B[r, c] = rng.NextDouble();
                }
            }

            SquareMatrix AI = A.Inverse();

            PrintMatrix("A * AI", A * AI);

            PrintMatrix("v + 2.0 * w", v + 2.0 * w);
            PrintMatrix("Av", A * v);
            PrintMatrix("B A", B * A);

            PrintMatrix("v^T", v.Transpose);
            PrintMatrix("B^T", B.Transpose);

            Console.WriteLine($"|v| = {v.Norm()}");
            Console.WriteLine($"sqrt(v^T v) = {Math.Sqrt(v.Transpose * v)}");

            UnitMatrix I = UnitMatrix.OfDimension(3);

            PrintMatrix("IA", I * A);

            Console.WriteLine(v == w);
            Console.WriteLine(I * A == A);
        }
        public void SquareVandermondeMatrixLUDecomposition()
        {
            // fails now for d = 8 because determinant slightly off
            for (int d = 1; d < 8; d++)
            {
                // Analytic expression for determinant
                double[] x = new double[d];
                for (int i = 0; i < d; i++)
                {
                    x[i] = i;
                }
                double det = 1.0;
                for (int i = 0; i < d; i++)
                {
                    for (int j = 0; j < i; j++)
                    {
                        det = det * (x[i] - x[j]);
                    }
                }

                // LU decompose the matrix
                SquareMatrix    V  = CreateVandermondeMatrix(d);
                LUDecomposition LU = V.LUDecomposition();

                // Test that the decomposition works
                SquareMatrix P = LU.PMatrix();
                SquareMatrix L = LU.LMatrix();
                SquareMatrix U = LU.UMatrix();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(P * V, L * U));

                // Check that the determinant agrees with the analytic expression
                Assert.IsTrue(TestUtilities.IsNearlyEqual(LU.Determinant(), det));

                // Check that the inverse works
                SquareMatrix VI = LU.Inverse();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V * VI, UnitMatrix.OfDimension(d)));

                // Test that a solution works
                ColumnVector t = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    t[i] = 1.0;
                }
                ColumnVector s = LU.Solve(t);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V * s, t));
            }
        }
        public void RandomRectangularSVD()
        {
            for (int c = 1; c < 64; c += 11)
            {
                Console.WriteLine(c);

                RectangularMatrix R = GenerateRandomMatrix(64, c);

                SingularValueDecomposition SVD = R.SingularValueDecomposition();

                Assert.IsTrue(SVD.RowCount == R.RowCount);
                Assert.IsTrue(SVD.ColumnCount == SVD.ColumnCount);
                Assert.IsTrue(SVD.Dimension == SVD.ColumnCount);

                // U has right dimensions and is orthogonal
                SquareMatrix U = SVD.LeftTransformMatrix;
                Assert.IsTrue(U.Dimension == R.RowCount);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(U.Transpose * U, UnitMatrix.OfDimension(U.Dimension)));

                // V has right dimensions and is orthogonal
                SquareMatrix V = SVD.RightTransformMatrix;
                Assert.IsTrue(V.Dimension == R.ColumnCount);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V.Transpose * V, UnitMatrix.OfDimension(V.Dimension)));

                // The transforms decompose the matrix with the claimed singular values
                RectangularMatrix S = U.Transpose * R * V;
                for (int i = 0; i < SVD.Contributors.Count; i++)
                {
                    SingularValueContributor t = SVD.Contributors[i];
                    Assert.IsTrue(t.SingularValue >= 0.0);
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(S[i, i], t.SingularValue));
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(R * t.RightSingularVector, t.SingularValue * t.LeftSingularVector));
                }

                // We can reconstruct the original matrix from the claimed singular values
                RectangularMatrix R2 = new RectangularMatrix(SVD.RowCount, SVD.ColumnCount);
                foreach (SingularValueContributor t in SVD.Contributors)
                {
                    R2 += t.SingularValue * t.LeftSingularVector * t.RightSingularVector.Transpose;
                }
                Assert.IsTrue(TestUtilities.IsNearlyEqual(R, R2));
            }
        }
Exemple #14
0
        public void HilbertMatrixCholeskyDecomposition()
        {
            for (int d = 1; d <= 4; d++)
            {
                SymmetricMatrix H = TestUtilities.CreateSymmetricHilbertMatrix(d);

                // Decomposition succeeds
                CholeskyDecomposition CD = H.CholeskyDecomposition();
                Assert.IsTrue(CD != null);
                Assert.IsTrue(CD.Dimension == d);

                // Decomposition works
                SquareMatrix S = CD.SquareRootMatrix();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(S * S.Transpose, H));

                // Inverse works
                SymmetricMatrix HI = CD.Inverse();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(H * HI, UnitMatrix.OfDimension(d)));
            }
        }
Exemple #15
0
        public void UnitMatrixConversions()
        {
            UnitMatrix I = UnitMatrix.OfDimension(3);

            SquareMatrix A = I.ToSquareMatrix();

            Assert.IsTrue(I == A);
            A[0, 1] += 2.0;
            Assert.IsTrue(I != A);

            SymmetricMatrix B = I.ToSymmetricMatrix();

            Assert.IsTrue(I == B);
            B[0, 1] += 2.0;
            Assert.IsTrue(I != B);

            DiagonalMatrix C = I.ToDiagonalMatrix();

            Assert.IsTrue(I == C);
            C[2, 2] -= 1.0;
            Assert.IsTrue(I != C);
        }
Exemple #16
0
        public void SymmetricRandomMatrixEigenvectors()
        {
            for (int d = 1; d <= 100; d = d + 11)
            {
                SymmetricMatrix M = CreateSymmetricRandomMatrix(d, 1);

                RealEigendecomposition E = M.Eigendecomposition();

                Assert.IsTrue(E.Dimension == M.Dimension);

                double[] eigenvalues = new double[E.Dimension];
                for (int i = 0; i < E.Dimension; i++)
                {
                    double       e = E.Eigenpairs[i].Eigenvalue;
                    ColumnVector v = E.Eigenpairs[i].Eigenvector;
                    // The eigenvector works
                    Assert.IsTrue(TestUtilities.IsNearlyEigenpair(M, v, e));
                    // The eigenvalue is the corresponding diagonal value of D
                    Assert.IsTrue(E.DiagonalizedMatrix[i, i] == e);
                    // Remember eigenvalue to take sum in future
                    eigenvalues[i] = e;
                }

                // The eigenvectors sum to trace
                double tr = M.Trace();
                Assert.IsTrue(TestUtilities.IsSumNearlyEqual(eigenvalues, tr));

                // The decomposition works
                Assert.IsTrue(TestUtilities.IsNearlyEqual(
                                  E.DiagonalizedMatrix, E.TransformMatrix.Transpose * M * E.TransformMatrix
                                  ));

                // Transform matrix is orthogonal
                Assert.IsTrue(TestUtilities.IsNearlyEqual(
                                  E.TransformMatrix.Transpose * E.TransformMatrix, UnitMatrix.OfDimension(d)
                                  ));
            }
        }
        public void RectangularQRDecomposition()
        {
            RectangularMatrix M = GenerateRandomMatrix(30, 10);

            QRDecomposition QRD = M.QRDecomposition();

            Assert.IsTrue(QRD.RowCount == M.RowCount);
            Assert.IsTrue(QRD.ColumnCount == M.ColumnCount);

            SquareMatrix Q = QRD.QMatrix;

            Assert.IsTrue(Q.Dimension == M.RowCount);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(Q * Q.Transpose, UnitMatrix.OfDimension(Q.Dimension)));

            RectangularMatrix R = QRD.RMatrix;

            Assert.IsTrue(R.RowCount == M.RowCount);
            Assert.IsTrue(R.ColumnCount == M.ColumnCount);

            RectangularMatrix QR = Q * R;

            Assert.IsTrue(TestUtilities.IsNearlyEqual(QR, M));
        }
Exemple #18
0
        public void UnitMatrixEntries()
        {
            int        n = 3;
            UnitMatrix I = UnitMatrix.OfDimension(n);

            Assert.IsTrue(I.Dimension == n);
            Assert.IsTrue(I.RowCount == n);
            Assert.IsTrue(I.ColumnCount == n);

            for (int r = 0; r < n; r++)
            {
                for (int c = 0; c < n; c++)
                {
                    if (r == c)
                    {
                        Assert.IsTrue(I[r, c] == 1.0);
                    }
                    else
                    {
                        Assert.IsTrue(I[r, c] == 0.0);
                    }
                }
            }
        }
        public void SquareMatrixSVD()
        {
            for (int d = 4; d < 64; d += 7)
            {
                SquareMatrix A = CreateSquareRandomMatrix(d, d);

                SingularValueDecomposition SVD = A.SingularValueDecomposition();

                Assert.IsTrue(SVD.Dimension == A.Dimension);

                // U has right dimensions and is orthogonal
                SquareMatrix U = SVD.LeftTransformMatrix;
                Assert.IsTrue(U.Dimension == A.Dimension);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(U.MultiplyTransposeBySelf(), UnitMatrix.OfDimension(U.Dimension)));

                // V has right dimensions and is orthogonal
                SquareMatrix V = SVD.RightTransformMatrix;
                Assert.IsTrue(V.Dimension == A.Dimension);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V.MultiplyTransposeBySelf(), UnitMatrix.OfDimension(V.Dimension)));
                Assert.IsTrue(SVD.Dimension == A.Dimension);

                // The transforms decompose the matrix with the claimed singular values
                SquareMatrix S = U.Transpose * A * V;
                for (int i = 0; i < SVD.Contributors.Count; i++)
                {
                    SingularValueContributor t = SVD.Contributors[i];
                    Assert.IsTrue(t.SingularValue >= 0.0);
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(S[i, i], t.SingularValue));
                }

                // We can solve a rhs using the SVD
                ColumnVector x = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    x[i] = i;
                }
                ColumnVector b = A * x;
                ColumnVector y = SVD.Solve(b);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(x, y));
            }
        }