Exemple #1
0
        // <summary>
        // Get back an ordered list of outputs from a union-all op. The ordering should
        // be identical to the ordered list "leftVars" which describes the left input of
        // the unionAllOp
        // </summary>
        // <param name="unionOp"> the unionall Op </param>
        // <param name="leftVars"> vars of the left input </param>
        // <returns> output vars ordered in the same way as the left input </returns>
        private static VarList GetUnionOutputs(UnionAllOp unionOp, VarList leftVars)
        {
            var varMap = unionOp.VarMap[0];
            Dictionary<Var, Var> reverseVarMap = varMap.GetReverseMap();

            var unionAllVars = Command.CreateVarList();
            foreach (var v in leftVars)
            {
                var newVar = reverseVarMap[v];
                unionAllVars.Add(newVar);
            }

            return unionAllVars;
        }
Exemple #2
0
        /// <summary>
        /// Comments from Murali:
        ///
        ///   There are several cases to consider here.
        ///
        ///   Case 0:
        ///     Let’s assume that K1 is the set of keys ({k1, k2, ..., kn}) for the
        ///     first input, and K2 ({l1, l2, …}) is the set of keys for the second
        ///     input.
        ///
        ///     The best case is when both K1 and K2 have the same cardinality (hopefully
        ///     greater than 0), and the keys are in the same locations (ie) the corresponding
        ///     positions in the select-list.  Even in this case, its not enough to take
        ///     the keys, and treat them as the keys of the union-all. What we’ll need to
        ///     do is to add a “branch” discriminator constant for each branch of the
        ///     union-all, and use this as the prefix for the keys.
        ///
        ///     For example, if I had:
        ///
        ///         Select c1, c2, c3... from ...
        ///         Union all
        ///         Select d1, d2, d3... from ...
        ///
        ///     And for the sake of argument, lets say that {c2} and {d2} are the keys of
        ///     each of the branches. What you’ll need to do is to translate this into
        ///
        ///         Select 0 as bd, c1, c2, c3... from ...
        ///         Union all
        ///         Select 1 as bd, d1, d2, d3... from ...
        ///
        ///     And then treat {bd, c2/d2} as the key of the union-all
        ///
        ///   Case 1:  (actually, a subcase of Case 0):
        ///     Now, if the keys don’t align, then we can simply take the union of the
        ///     corresponding positions, and make them all the keys (we would still need
        ///     the branch discriminator)
        ///
        ///   Case 2:
        ///     Finally, if you need to “pull” up keys from either of the branches, it is
        ///     possible that the branches get out of whack.  We will then need to push up
        ///     the keys (with nulls if the other branch doesn’t have the corresponding key)
        ///     into the union-all. (We still need the branch discriminator).
        ///
        /// Now, unfortunately, whenever we've got polymorphic entity types, we'll end up
        /// in case 2 way more often than we really want to, because when we're pulling up
        /// keys, we don't want to reason about a caseop (which is how polymorphic types
        /// wrap their key value).
        ///
        /// To simplify all of this, we:
        ///
        /// (1) Pulling up the keys for both branches of the UnionAll, and computing which
        ///     keys are in the outputs and which are missing from the outputs.
        ///
        /// (2) Accumulate all the missing keys.
        ///
        /// (3) Slap a projectOp around each branch, adding a branch discriminator
        ///     var and all the missing keys.  When keys are missing from a different
        ///     branch, we'll construct null ops for them on the other branches.  If
        ///     a branch already has a branch descriminator, we'll re-use it instead
        ///     of constructing a new one.  (Of course, if there aren't any keys to
        ///     add and it's already including the branch discriminator we won't
        ///     need the projectOp)
        ///
        /// </summary>
        /// <param name="op">the UnionAllOp</param>
        /// <param name="n">current subtree</param>
        public override void Visit(UnionAllOp op, Node n)
        {
#if DEBUG
            string input = Dump.ToXml(m_command, n);
#endif //DEBUG

            // Ensure we have keys pulled up on each branch of the union all.
            VisitChildren(n);

            // Create the setOp var we'll use to output the branch discriminator value; if
            // any of the branches are already surfacing a branchDiscriminator var to the
            // output of this operation then we won't need to use this but we construct it
            // early to simplify logic.
            Var outputBranchDiscriminatorVar = m_command.CreateSetOpVar(m_command.IntegerType);

            // Now ensure that we're outputting the key vars from this op as well.
            VarList  allKeyVarsMissingFromOutput = Command.CreateVarList();
            VarVec[] keyVarsMissingFromOutput    = new VarVec[n.Children.Count];

            for (int i = 0; i < n.Children.Count; i++)
            {
                Node             branchNode     = n.Children[i];
                ExtendedNodeInfo branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                // Identify keys that aren't in the output list of this operation. We
                // determine these by remapping the keys that are found through the node's
                // VarMap, which gives us the keys in the same "varspace" as the outputs
                // of the UnionAll, then we subtract out the outputs of this UnionAll op,
                // leaving things that are not in the output vars.  Of course, if they're
                // not in the output vars, then we didn't really remap.
                VarVec existingKeyVars = branchNodeInfo.Keys.KeyVars.Remap(op.VarMap[i]);

                keyVarsMissingFromOutput[i] = m_command.CreateVarVec(existingKeyVars);
                keyVarsMissingFromOutput[i].Minus(op.Outputs);

                // Special Case: if the branch is a UnionAll, it will already have it's
                // branch discriminator var added in the keys; we don't want to add that
                // a second time...
                if (OpType.UnionAll == branchNode.Op.OpType)
                {
                    UnionAllOp branchUnionAllOp = (UnionAllOp)branchNode.Op;

                    keyVarsMissingFromOutput[i].Clear(branchUnionAllOp.BranchDiscriminator);
                }

                allKeyVarsMissingFromOutput.AddRange(keyVarsMissingFromOutput[i]);
            }

            // Construct the setOp vars we're going to map to output.
            VarList allKeyVarsToAddToOutput = Command.CreateVarList();

            foreach (Var v in allKeyVarsMissingFromOutput)
            {
                Var newKeyVar = m_command.CreateSetOpVar(v.Type);
                allKeyVarsToAddToOutput.Add(newKeyVar);
            }

            // Now that we've identified all the keys we need to add, ensure that each branch
            // has both the branch discrimination var and the all the keys in them, even when
            // the keys are just going to null (which we construct, as needed)
            for (int i = 0; i < n.Children.Count; i++)
            {
                Node             branchNode     = n.Children[i];
                ExtendedNodeInfo branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                VarVec      branchOutputVars = m_command.CreateVarVec();
                List <Node> varDefNodes      = new List <Node>();

                // If the branch is a UnionAllOp that has a branch discriminator var then we can
                // use it, otherwise we'll construct a new integer constant with the next value
                // of the branch discriminator value from the command object.
                Var branchDiscriminatorVar;

                if (OpType.UnionAll == branchNode.Op.OpType && null != ((UnionAllOp)branchNode.Op).BranchDiscriminator)
                {
                    branchDiscriminatorVar = ((UnionAllOp)branchNode.Op).BranchDiscriminator;

                    // If the branch has a discriminator var, but we haven't added it to the
                    // varmap yet, then we do so now.
                    if (!op.VarMap[i].ContainsValue(branchDiscriminatorVar))
                    {
                        op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                        // We don't need to add this to the branch outputs, because it's already there,
                        // otherwise we wouln't have gotten here, yes?
                    }
                    else
                    {
                        // In this case, we're already outputting the branch discriminator var -- we'll
                        // just use it for both sides.  We should never have a case where only one of the
                        // two branches are outputting the branch discriminator var, because it can only
                        // be constructed in this method, and we wouldn't need it for any other purpose.
                        PlanCompiler.Assert(0 == i, "right branch has a discriminator var that the left branch doesn't have?");
                        VarMap reverseVarMap = op.VarMap[i].GetReverseMap();
                        outputBranchDiscriminatorVar = reverseVarMap[branchDiscriminatorVar];
                    }
                }
                else
                {
                    // Not a unionAll -- we have to add a BranchDiscriminator var.
                    varDefNodes.Add(
                        m_command.CreateVarDefNode(
                            m_command.CreateNode(
                                m_command.CreateConstantOp(m_command.IntegerType, m_command.NextBranchDiscriminatorValue)), out branchDiscriminatorVar));

                    branchOutputVars.Set(branchDiscriminatorVar);
                    op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                }

                // Append all the missing keys to the branch outputs.  If the missing key
                // is not from this branch then create a null.
                for (int j = 0; j < allKeyVarsMissingFromOutput.Count; j++)
                {
                    Var keyVar = allKeyVarsMissingFromOutput[j];

                    if (!keyVarsMissingFromOutput[i].IsSet(keyVar))
                    {
                        varDefNodes.Add(
                            m_command.CreateVarDefNode(
                                m_command.CreateNode(
                                    m_command.CreateNullOp(keyVar.Type)), out keyVar));

                        branchOutputVars.Set(keyVar);
                    }

                    // In all cases, we're adding a key to the output so we need to update the
                    // varmap.
                    op.VarMap[i].Add(allKeyVarsToAddToOutput[j], keyVar);
                }

                // If we got this far and didn't add anything to the branch, then we're done.
                // Otherwise we'll have to construct the new projectOp around the input branch
                // to add the stuff we've added.
                if (branchOutputVars.IsEmpty)
                {
                    // Actually, we're not quite done -- we need to update the key vars for the
                    // branch to include the branch discriminator var we
                    branchNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
                else
                {
                    PlanCompiler.Assert(varDefNodes.Count != 0, "no new nodes?");

                    // Start by ensuring all the existing outputs from the branch are in the list.
                    foreach (Var v in op.VarMap[i].Values)
                    {
                        branchOutputVars.Set(v);
                    }

                    // Now construct a project op to project out everything we've added, and
                    // replace the branchNode with it in the flattened ladder.
                    n.Children[i] = m_command.CreateNode(m_command.CreateProjectOp(branchOutputVars),
                                                         branchNode,
                                                         m_command.CreateNode(m_command.CreateVarDefListOp(), varDefNodes));

                    // Finally, ensure that we update the Key info for the projectOp to include
                    // the original branch's keys, along with the branch discriminator var.
                    m_command.RecomputeNodeInfo(n.Children[i]);
                    ExtendedNodeInfo projectNodeInfo = m_command.GetExtendedNodeInfo(n.Children[i]);
                    projectNodeInfo.Keys.KeyVars.InitFrom(branchNodeInfo.Keys.KeyVars);
                    projectNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
            }

            // All done with the branches, now it's time to update the UnionAll op to indicate
            // that we've got a branch discriminator var.
            n.Op = m_command.CreateUnionAllOp(op.VarMap[0], op.VarMap[1], outputBranchDiscriminatorVar);

            // Finally, the thing we've all been waiting for -- computing the keys.  We cheat here and let
            // nodeInfo do it so we don't have to duplicate the logic...
            m_command.RecomputeNodeInfo(n);

#if DEBUG
            input = input.Trim();
            string output = Dump.ToXml(m_command, n);
#endif //DEBUG
        }
 /// <summary>
 ///     Visitor pattern method for UnionAllOp
 /// </summary>
 /// <param name="op"> The UnionAllOp being visited </param>
 /// <param name="n"> The Node that references the Op </param>
 public virtual void Visit(UnionAllOp op, Node n)
 {
     VisitSetOp(op, n);
 }
Exemple #4
0
 // <summary>
 // Copies a UnionAllOp
 // </summary>
 // <param name="op"> The Op to Copy </param>
 // <param name="n"> The Node that references the Op </param>
 // <returns> A copy of the original Node that references a copy of the original Op </returns>
 public override Node Visit(UnionAllOp op, Node n)
 {
     return CopySetOp(op, n);
 }
        public override void Visit(UnionAllOp op, Node n)
        {
#if DEBUG
            var input = Dump.ToXml(n);
#endif
            //DEBUG

            // Ensure we have keys pulled up on each branch of the union all.
            VisitChildren(n);

            // Create the setOp var we'll use to output the branch discriminator value; if 
            // any of the branches are already surfacing a branchDiscriminator var to the 
            // output of this operation then we won't need to use this but we construct it 
            // early to simplify logic.
            Var outputBranchDiscriminatorVar = m_command.CreateSetOpVar(m_command.IntegerType);

            // Now ensure that we're outputting the key vars from this op as well.
            var allKeyVarsMissingFromOutput = Command.CreateVarList();
            var keyVarsMissingFromOutput = new VarVec[n.Children.Count];

            for (var i = 0; i < n.Children.Count; i++)
            {
                var branchNode = n.Children[i];
                var branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                // Identify keys that aren't in the output list of this operation. We
                // determine these by remapping the keys that are found through the node's
                // VarMap, which gives us the keys in the same "varspace" as the outputs
                // of the UnionAll, then we subtract out the outputs of this UnionAll op,
                // leaving things that are not in the output vars.  Of course, if they're
                // not in the output vars, then we didn't really remap.
                var existingKeyVars = branchNodeInfo.Keys.KeyVars.Remap(op.VarMap[i]);

                keyVarsMissingFromOutput[i] = m_command.CreateVarVec(existingKeyVars);
                keyVarsMissingFromOutput[i].Minus(op.Outputs);

                // Special Case: if the branch is a UnionAll, it will already have it's
                // branch discriminator var added in the keys; we don't want to add that
                // a second time...
                if (OpType.UnionAll
                    == branchNode.Op.OpType)
                {
                    var branchUnionAllOp = (UnionAllOp)branchNode.Op;

                    keyVarsMissingFromOutput[i].Clear(branchUnionAllOp.BranchDiscriminator);
                }

                allKeyVarsMissingFromOutput.AddRange(keyVarsMissingFromOutput[i]);
            }

            // Construct the setOp vars we're going to map to output.
            var allKeyVarsToAddToOutput = Command.CreateVarList();

            foreach (var v in allKeyVarsMissingFromOutput)
            {
                Var newKeyVar = m_command.CreateSetOpVar(v.Type);
                allKeyVarsToAddToOutput.Add(newKeyVar);
            }

            // Now that we've identified all the keys we need to add, ensure that each branch 
            // has both the branch discrimination var and the all the keys in them, even when 
            // the keys are just going to null (which we construct, as needed)
            for (var i = 0; i < n.Children.Count; i++)
            {
                var branchNode = n.Children[i];
                var branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                var branchOutputVars = m_command.CreateVarVec();
                var varDefNodes = new List<Node>();

                // If the branch is a UnionAllOp that has a branch discriminator var then we can
                // use it, otherwise we'll construct a new integer constant with the next value 
                // of the branch discriminator value from the command object.
                Var branchDiscriminatorVar;

                if (OpType.UnionAll == branchNode.Op.OpType
                    && null != ((UnionAllOp)branchNode.Op).BranchDiscriminator)
                {
                    branchDiscriminatorVar = ((UnionAllOp)branchNode.Op).BranchDiscriminator;

                    // If the branch has a discriminator var, but we haven't added it to the
                    // varmap yet, then we do so now.
                    if (!op.VarMap[i].ContainsValue(branchDiscriminatorVar))
                    {
                        op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                        // We don't need to add this to the branch outputs, because it's already there,
                        // otherwise we wouln't have gotten here, yes?
                    }
                    else
                    {
                        // In this case, we're already outputting the branch discriminator var -- we'll 
                        // just use it for both sides.  We should never have a case where only one of the
                        // two branches are outputting the branch discriminator var, because it can only
                        // be constructed in this method, and we wouldn't need it for any other purpose.
                        PlanCompiler.Assert(0 == i, "right branch has a discriminator var that the left branch doesn't have?");
                        var reverseVarMap = op.VarMap[i].GetReverseMap();
                        outputBranchDiscriminatorVar = reverseVarMap[branchDiscriminatorVar];
                    }
                }
                else
                {
                    // Not a unionAll -- we have to add a BranchDiscriminator var.
                    varDefNodes.Add(
                        m_command.CreateVarDefNode(
                            m_command.CreateNode(
                                m_command.CreateConstantOp(m_command.IntegerType, m_command.NextBranchDiscriminatorValue)),
                            out branchDiscriminatorVar));

                    branchOutputVars.Set(branchDiscriminatorVar);
                    op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                }

                // Append all the missing keys to the branch outputs.  If the missing key
                // is not from this branch then create a null.
                for (var j = 0; j < allKeyVarsMissingFromOutput.Count; j++)
                {
                    var keyVar = allKeyVarsMissingFromOutput[j];

                    if (!keyVarsMissingFromOutput[i].IsSet(keyVar))
                    {
                        varDefNodes.Add(
                            m_command.CreateVarDefNode(
                                m_command.CreateNode(
                                    m_command.CreateNullOp(keyVar.Type)), out keyVar));

                        branchOutputVars.Set(keyVar);
                    }

                    // In all cases, we're adding a key to the output so we need to update the
                    // varmap.
                    op.VarMap[i].Add(allKeyVarsToAddToOutput[j], keyVar);
                }

                // If we got this far and didn't add anything to the branch, then we're done.
                // Otherwise we'll have to construct the new projectOp around the input branch
                // to add the stuff we've added.
                if (branchOutputVars.IsEmpty)
                {
                    // Actually, we're not quite done -- we need to update the key vars for the
                    // branch to include the branch discriminator var we
                    branchNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
                else
                {
                    PlanCompiler.Assert(varDefNodes.Count != 0, "no new nodes?");

                    // Start by ensuring all the existing outputs from the branch are in the list.
                    foreach (var v in op.VarMap[i].Values)
                    {
                        branchOutputVars.Set(v);
                    }

                    // Now construct a project op to project out everything we've added, and
                    // replace the branchNode with it in the flattened ladder.
                    n.Children[i] = m_command.CreateNode(
                        m_command.CreateProjectOp(branchOutputVars),
                        branchNode,
                        m_command.CreateNode(m_command.CreateVarDefListOp(), varDefNodes));

                    // Finally, ensure that we update the Key info for the projectOp to include
                    // the original branch's keys, along with the branch discriminator var.
                    m_command.RecomputeNodeInfo(n.Children[i]);
                    var projectNodeInfo = m_command.GetExtendedNodeInfo(n.Children[i]);
                    projectNodeInfo.Keys.KeyVars.InitFrom(branchNodeInfo.Keys.KeyVars);
                    projectNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
            }

            // All done with the branches, now it's time to update the UnionAll op to indicate
            // that we've got a branch discriminator var.
            n.Op = m_command.CreateUnionAllOp(op.VarMap[0], op.VarMap[1], outputBranchDiscriminatorVar);

            // Finally, the thing we've all been waiting for -- computing the keys.  We cheat here and let 
            // nodeInfo do it so we don't have to duplicate the logic...
            m_command.RecomputeNodeInfo(n);

#if DEBUG
            input = input.Trim();
            var output = Dump.ToXml(n);
#endif
            //DEBUG
        }
Exemple #6
0
        public override void Visit(UnionAllOp op, System.Data.Entity.Core.Query.InternalTrees.Node n)
        {
            this.VisitChildren(n);
            Var     var1     = (Var)this.m_command.CreateSetOpVar(this.m_command.IntegerType);
            VarList varList1 = Command.CreateVarList();

            VarVec[] varVecArray = new VarVec[n.Children.Count];
            for (int index = 0; index < n.Children.Count; ++index)
            {
                System.Data.Entity.Core.Query.InternalTrees.Node child = n.Children[index];
                VarVec v = this.m_command.GetExtendedNodeInfo(child).Keys.KeyVars.Remap((Dictionary <Var, Var>)op.VarMap[index]);
                varVecArray[index] = this.m_command.CreateVarVec(v);
                varVecArray[index].Minus(op.Outputs);
                if (OpType.UnionAll == child.Op.OpType)
                {
                    UnionAllOp op1 = (UnionAllOp)child.Op;
                    varVecArray[index].Clear(op1.BranchDiscriminator);
                }
                varList1.AddRange((IEnumerable <Var>)varVecArray[index]);
            }
            VarList varList2 = Command.CreateVarList();

            foreach (Var var2 in (List <Var>)varList1)
            {
                Var setOpVar = (Var)this.m_command.CreateSetOpVar(var2.Type);
                varList2.Add(setOpVar);
            }
            for (int index1 = 0; index1 < n.Children.Count; ++index1)
            {
                System.Data.Entity.Core.Query.InternalTrees.Node child = n.Children[index1];
                ExtendedNodeInfo extendedNodeInfo1 = this.m_command.GetExtendedNodeInfo(child);
                VarVec           varVec            = this.m_command.CreateVarVec();
                List <System.Data.Entity.Core.Query.InternalTrees.Node> args = new List <System.Data.Entity.Core.Query.InternalTrees.Node>();
                Var computedVar1;
                if (OpType.UnionAll == child.Op.OpType && ((UnionAllOp)child.Op).BranchDiscriminator != null)
                {
                    computedVar1 = ((UnionAllOp)child.Op).BranchDiscriminator;
                    if (!op.VarMap[index1].ContainsValue(computedVar1))
                    {
                        op.VarMap[index1].Add(var1, computedVar1);
                    }
                    else
                    {
                        System.Data.Entity.Core.Query.PlanCompiler.PlanCompiler.Assert(0 == index1, "right branch has a discriminator var that the left branch doesn't have?");
                        var1 = op.VarMap[index1].GetReverseMap()[computedVar1];
                    }
                }
                else
                {
                    args.Add(this.m_command.CreateVarDefNode(this.m_command.CreateNode((Op)this.m_command.CreateConstantOp(this.m_command.IntegerType, (object)this.m_command.NextBranchDiscriminatorValue)), out computedVar1));
                    varVec.Set(computedVar1);
                    op.VarMap[index1].Add(var1, computedVar1);
                }
                for (int index2 = 0; index2 < varList1.Count; ++index2)
                {
                    Var computedVar2 = varList1[index2];
                    if (!varVecArray[index1].IsSet(computedVar2))
                    {
                        args.Add(this.m_command.CreateVarDefNode(this.m_command.CreateNode((Op)this.m_command.CreateNullOp(computedVar2.Type)), out computedVar2));
                        varVec.Set(computedVar2);
                    }
                    op.VarMap[index1].Add(varList2[index2], computedVar2);
                }
                if (varVec.IsEmpty)
                {
                    extendedNodeInfo1.Keys.KeyVars.Set(computedVar1);
                }
                else
                {
                    System.Data.Entity.Core.Query.PlanCompiler.PlanCompiler.Assert(args.Count != 0, "no new nodes?");
                    foreach (Var v in op.VarMap[index1].Values)
                    {
                        varVec.Set(v);
                    }
                    n.Children[index1] = this.m_command.CreateNode((Op)this.m_command.CreateProjectOp(varVec), child, this.m_command.CreateNode((Op)this.m_command.CreateVarDefListOp(), args));
                    this.m_command.RecomputeNodeInfo(n.Children[index1]);
                    ExtendedNodeInfo extendedNodeInfo2 = this.m_command.GetExtendedNodeInfo(n.Children[index1]);
                    extendedNodeInfo2.Keys.KeyVars.InitFrom(extendedNodeInfo1.Keys.KeyVars);
                    extendedNodeInfo2.Keys.KeyVars.Set(computedVar1);
                }
            }
            n.Op = (Op)this.m_command.CreateUnionAllOp(op.VarMap[0], op.VarMap[1], var1);
            this.m_command.RecomputeNodeInfo(n);
        }