public LaunchMatchmakingResultEvent(LaunchMatchmakingResultEvent other) : this() { fightDefId_ = other.fightDefId_; result_ = other.result_; _unknownFields = UnknownFieldSet.Clone(other._unknownFields); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData <Types.Assembly>("Material", ref assembly); GH_Point point = new GH_Point(); GH_Integer piles = new GH_Integer(1); GH_Number radius = new GH_Number(0); GH_Number plateThickness = new GH_Number(0); GH_Number plateLength = new GH_Number(0); GH_Number plateWidth = new GH_Number(0); GH_Number pileLength = new GH_Number(0); DA.GetData <GH_Point>("Point", ref point); DA.GetData <GH_Number>("Pile Radius", ref radius); DA.GetData <GH_Integer>("Piles", ref piles); DA.GetData <GH_Number>("Plate Thickness", ref plateThickness); DA.GetData <GH_Number>("Plate Length", ref plateLength); DA.GetData <GH_Number>("Plate Width", ref plateWidth); DA.GetData <GH_Number>("Pile Length", ref pileLength); drawExtrusion(point.Value, plateLength.Value, plateWidth.Value, plateThickness.Value); Rhino.Geometry.Circle circle = new Rhino.Geometry.Circle(point.Value, (plateWidth.Value / 2) * 0.8); double numberOfPiles = piles.Value; for (int i = 1; i <= piles.Value; i++) { double iteration = i; double factor = 2.0 * Math.PI * (iteration / numberOfPiles); Rhino.Geometry.Point3d center = (piles.Value == 1)? point.Value : circle.ToNurbsCurve().PointAt(factor); drawColumn(center, pileLength.Value, radius.Value); } double calculationVolume = (piles.Value * pileLength.Value * radius.Value) + (plateThickness.Value * plateLength.Value * plateWidth.Value); Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble <Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble <Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble <Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble <Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble <Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble <Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }
public void MergeFrom(LaunchMatchmakingResultEvent other) { if (other != null) { if (other.FightDefId != 0) { FightDefId = other.FightDefId; } if (other.Result != 0) { Result = other.Result; } _unknownFields = UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields); } }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData <Types.Assembly>("Material", ref assembly); GH_Brep brep = new GH_Brep(); GH_Number volume = new GH_Number(0); if (!DA.GetData <GH_Number>("Volume", ref volume)) { volume = new GH_Number(0); } if (!DA.GetData <GH_Brep>("Brep", ref brep)) { brep = new GH_Brep(); } double calculationVolume = volume.Value; if (brep.Value != null) { calculationVolume += brep.Value.GetVolume(); } Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble <Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble <Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble <Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble <Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble <Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble <Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }
public void MergeFrom(CodedInputStream input) { uint num; while ((num = input.ReadTag()) != 0) { switch (num) { default: _unknownFields = UnknownFieldSet.MergeFieldFrom(_unknownFields, input); break; case 8u: FightDefId = input.ReadInt32(); break; case 16u: result_ = (Types.Result)input.ReadEnum(); break; } } }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData <Types.Assembly>("Material", ref assembly); GH_Number area = new GH_Number(0); GH_Surface surface = new GH_Surface(); if (!DA.GetData <GH_Number>("Area", ref area)) { area = new GH_Number(0); } if (!DA.GetData <GH_Surface>("Surface", ref surface)) { surface = new GH_Surface(); } double calculationArea = area.Value; if (surface.Value != null) { calculationArea += surface.Value.GetArea(); } Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble <Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationArea), Acidification = new Types.UnitDouble <Types.LCA.kgSO2>(assembly.Acidification.Value * calculationArea), DepletionOfNonrenewbles = new Types.UnitDouble <Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationArea), DepletionOfOzoneLayer = new Types.UnitDouble <Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationArea), Eutrophication = new Types.UnitDouble <Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationArea), FormationTroposphericOzone = new Types.UnitDouble <Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationArea) }; DA.SetData("LCA Result", result); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData<Types.Assembly>("Material", ref assembly); GH_Brep brep = new GH_Brep(); GH_Number volume = new GH_Number(0); if (!DA.GetData<GH_Number>("Volume", ref volume)) volume = new GH_Number(0); if (!DA.GetData<GH_Brep>("Brep", ref brep)) brep = new GH_Brep(); double calculationVolume = volume.Value; if (brep.Value != null) calculationVolume += brep.Value.GetVolume(); Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble<Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble<Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble<Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble<Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble<Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble<Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData<Types.Assembly>("Material", ref assembly); GH_Number area = new GH_Number(0); GH_Surface surface = new GH_Surface(); if (!DA.GetData<GH_Number>("Area", ref area)) area = new GH_Number(0); if (!DA.GetData<GH_Surface>("Surface", ref surface)) surface = new GH_Surface(); double calculationArea = area.Value; if (surface.Value != null) calculationArea += surface.Value.GetArea(); Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble<Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationArea), Acidification = new Types.UnitDouble<Types.LCA.kgSO2>(assembly.Acidification.Value * calculationArea), DepletionOfNonrenewbles = new Types.UnitDouble<Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationArea), DepletionOfOzoneLayer = new Types.UnitDouble<Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationArea), Eutrophication = new Types.UnitDouble<Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationArea), FormationTroposphericOzone = new Types.UnitDouble<Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationArea) }; DA.SetData("LCA Result", result); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData<Types.Assembly>("Material", ref assembly); GH_Curve curve = new GH_Curve(); GH_Number radius = new GH_Number(0); GH_Number height = new GH_Number(0); GH_Number width = new GH_Number(0); Types.Profile profile = null; if (!DA.GetData<GH_Number>("Radius", ref radius)) radius.Value = 0; if (!DA.GetData<GH_Number>("Height", ref height)) height.Value = 0; if (!DA.GetData<GH_Number>("Width", ref width)) width.Value = 0; if (!DA.GetData<Types.Profile>("Profile", ref profile)) profile = null; DA.GetData<GH_Curve>("Curve", ref curve); double calculationVolume = 0; if (profile != null) { calculationVolume = curve.Value.GetLength() * profile.Area; drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, profile.Area); } else { if (radius.Value > 0) { drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, radius.Value); calculationVolume = curve.Value.GetLength() * radius.Value * radius.Value * Math.PI; } else { drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, height.Value, width.Value); calculationVolume = curve.Value.GetLength() * height.Value * width.Value; } } Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble<Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble<Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble<Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble<Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble<Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble<Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData<Types.Assembly>("Material", ref assembly); GH_Point point = new GH_Point(); GH_Integer piles = new GH_Integer(1); GH_Number radius = new GH_Number(0); GH_Number plateThickness = new GH_Number(0); GH_Number plateLength = new GH_Number(0); GH_Number plateWidth = new GH_Number(0); GH_Number pileLength = new GH_Number(0); DA.GetData<GH_Point>("Point", ref point); DA.GetData<GH_Number>("Pile Radius", ref radius); DA.GetData<GH_Integer>("Piles", ref piles); DA.GetData<GH_Number>("Plate Thickness", ref plateThickness); DA.GetData<GH_Number>("Plate Length", ref plateLength); DA.GetData<GH_Number>("Plate Width", ref plateWidth); DA.GetData<GH_Number>("Pile Length", ref pileLength); drawExtrusion(point.Value, plateLength.Value, plateWidth.Value, plateThickness.Value); Rhino.Geometry.Circle circle = new Rhino.Geometry.Circle(point.Value, (plateWidth.Value / 2) * 0.8); double numberOfPiles = piles.Value; for (int i = 1; i <= piles.Value; i++) { double iteration = i; double factor = 2.0 * Math.PI * (iteration / numberOfPiles); Rhino.Geometry.Point3d center = (piles.Value == 1)? point.Value : circle.ToNurbsCurve().PointAt(factor); drawColumn(center, pileLength.Value, radius.Value); } double calculationVolume = (piles.Value * pileLength.Value * radius.Value) + (plateThickness.Value * plateLength.Value * plateWidth.Value); Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble<Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble<Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble<Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble<Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble<Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble<Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }
protected override void SolveInstance(IGH_DataAccess DA) { Types.Assembly assembly = new Types.Assembly(); DA.GetData <Types.Assembly>("Material", ref assembly); GH_Curve curve = new GH_Curve(); GH_Number radius = new GH_Number(0); GH_Number height = new GH_Number(0); GH_Number width = new GH_Number(0); Types.Profile profile = null; if (!DA.GetData <GH_Number>("Radius", ref radius)) { radius.Value = 0; } if (!DA.GetData <GH_Number>("Height", ref height)) { height.Value = 0; } if (!DA.GetData <GH_Number>("Width", ref width)) { width.Value = 0; } if (!DA.GetData <Types.Profile>("Profile", ref profile)) { profile = null; } DA.GetData <GH_Curve>("Curve", ref curve); double calculationVolume = 0; if (profile != null) { calculationVolume = curve.Value.GetLength() * profile.Area; drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, profile.Area); } else { if (radius.Value > 0) { drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, radius.Value); calculationVolume = curve.Value.GetLength() * radius.Value * radius.Value * Math.PI; } else { drawColumn(curve.Value.PointAtStart, curve.Value.PointAtEnd, height.Value, width.Value); calculationVolume = curve.Value.GetLength() * height.Value * width.Value; } } Types.Result result = new Types.Result() { GlobalWarmingPotential = new Types.UnitDouble <Types.LCA.CO2e>(assembly.GlobalWarmingPotential.Value * calculationVolume), Acidification = new Types.UnitDouble <Types.LCA.kgSO2>(assembly.Acidification.Value * calculationVolume), DepletionOfNonrenewbles = new Types.UnitDouble <Types.LCA.MJ>(assembly.DepletionOfNonrenewbles.Value * calculationVolume), DepletionOfOzoneLayer = new Types.UnitDouble <Types.LCA.kgCFC11>(assembly.DepletionOfOzoneLayer.Value * calculationVolume), Eutrophication = new Types.UnitDouble <Types.LCA.kgPhostphate>(assembly.Eutrophication.Value * calculationVolume), FormationTroposphericOzone = new Types.UnitDouble <Types.LCA.kgNOx>(assembly.FormationTroposphericOzone.Value * calculationVolume) }; DA.SetData("LCA Result", result); }