public void Reset() { af7.Clear(); af8.Clear(); tp9.Clear(); tp10.Clear(); TrainingValues.Clear(); AlphaTrainingValues.Clear(); trainer = null; training = false; readingsMean.Clear(); status = EyesStatus.NONE; ignore = SKIP; }
private void RunFFT() { readingsMean.Clear(); for (int i = 0; i < af7.Count; i++) { readingsMean.Add(af7[i] + tp9[i] + tp10[i] + af8[i] / FEATURE_COUNT); } CalculateFFT(readingsMean, FFTResults); CalculateFFT(af7, AF7FFT); CalculateFFT(af8, AF8FFT); CalculateFFT(tp9, TP9FFT); CalculateFFT(tp10, TP10FFT); if (!Training || (Training && ignore == 0)) { TrainingValue trainingValue = new TrainingValue((int)Status, FEATURE_COUNT); trainingValue.Features[0] = PSD(TP9FFT, FREQ_STEP); trainingValue.Features[1] = PSD(AF7FFT, FREQ_STEP); trainingValue.Features[2] = PSD(AF8FFT, FREQ_STEP); trainingValue.Features[3] = PSD(TP10FFT, FREQ_STEP); if (!Training && trainer != null && trainer.Trained) { Status = (EyesStatus)trainer.Predict(trainingValue); } if (training || keepTrainingData) { TrainingValues.Add(trainingValue); } } else if (Training && ignore != 0) { ignore--; } }