Exemple #1
0
        public static double TestStatic(IList <IList <double> > samples)
        {
            double         sample_count = samples.Count;
            double         total_count  = ToolsCollection.CountElements(samples);
            double         total_mean   = ToolsMathStatistics.MeanAll(samples);
            IList <double> sample_means = ToolsMathStatistics.Means0(samples);

            double sstr = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                sstr += samples[sample_index].Count * ToolsMath.Sqr(sample_means[sample_index] - total_mean);
            }

            double sse = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                for (int measurement_index = 0; measurement_index < samples[sample_index].Count; measurement_index++)
                {
                    sse += ToolsMath.Sqr(samples[sample_index][measurement_index] - sample_means[sample_index]);
                }
            }
            //FTransform

            double degrees_of_freedom_0 = (sample_count - 1.0);
            double degrees_of_freedom_1 = (total_count - sample_count);
            double summed_variance      = sstr / degrees_of_freedom_0;
            double total_varaiance      = sse / degrees_of_freedom_1;
            double f_statistic          = summed_variance / total_varaiance;


            return(FisherSnedecor.CDF(degrees_of_freedom_0, degrees_of_freedom_1, f_statistic));
        }
Exemple #2
0
        public static Tuple <double, double> TestStatic(IList <IList <double> > samples)
        {
            int sample_size = samples[0].Count;

            foreach (IList <double> sample in samples)
            {
                if (sample.Count != sample_size)
                {
                    throw new Exception("samples must be of equal size");
                }
            }

            // Larsen Marx 4Th editiopn P779
            double         sample_count     = samples.Count;
            double         total_count      = ToolsCollection.CountElements(samples);
            double         total_mean       = ToolsMathStatistics.MeanAll(samples);
            double         sum_squared_all  = ToolsMathStatistics.SumSquaredAll(samples);
            IList <double> sample_sums      = ToolsMathCollection.Sums0(samples);
            IList <double> measurement_sums = ToolsMathCollection.Sums1(samples);

            // compute C
            double c = ToolsMath.Sqr(total_mean * total_count) / (sample_size * sample_count);


            double sstot = sum_squared_all - c;

            double ssb = 0;

            for (int measurement_index = 0; measurement_index < sample_size; measurement_index++)
            {
                ssb += ToolsMath.Sqr(measurement_sums[measurement_index]) / sample_count;
            }
            ssb -= c;

            double sstr = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                sstr += ToolsMath.Sqr(sample_sums[sample_index]) / sample_size;
            }
            sstr -= c;

            double sse = sstot - ssb - sstr;


            double degrees_of_freedom_0_samples      = (sample_count - 1.0);
            double degrees_of_freedom_0_measurements = (sample_size - 1.0);
            double degrees_of_freedom_1 = degrees_of_freedom_0_samples * degrees_of_freedom_0_measurements;

            //F-Transform samples
            double f_statistic_samples = (sstr / degrees_of_freedom_0_samples) / (sse / degrees_of_freedom_1);

            //F-Transform measurements
            double f_statistic_measurements = (ssb / degrees_of_freedom_0_measurements) / (sse / degrees_of_freedom_1);


            return(new Tuple <double, double>(
                       FisherSnedecor.CDF(degrees_of_freedom_0_samples, degrees_of_freedom_1, f_statistic_samples),
                       FisherSnedecor.CDF(degrees_of_freedom_0_measurements, degrees_of_freedom_1, f_statistic_measurements)));
        }
        public static double TestStatic(IList <IList <double> > samples)
        {
            int sample_size = samples[0].Count;

            foreach (IList <double> sample in samples)
            {
                if (sample.Count != sample_size)
                {
                    throw new Exception("samples must be of equal size");
                }
            }


            double[,] measurement_ranks = ToolsMathStatistics.Ranks1(samples);
            double[] rank_sums = ToolsMathCollection.Sums0(measurement_ranks);


            double chi_square_statistic_part = 0.0;

            for (int treatment_index = 0; treatment_index < rank_sums.Length; treatment_index++)
            {
                chi_square_statistic_part += ToolsMath.Sqr(rank_sums[treatment_index]);
            }
            double treatment_count = samples.Count;
            double block_count     = sample_size;

            double chi_square_statistic = ((12.0 / (block_count * treatment_count * (treatment_count + 1.0))) * chi_square_statistic_part) - (3 * block_count * (treatment_count + 1.0));

            return(ChiSquared.CDF(rank_sums.Length, chi_square_statistic));
        }
Exemple #4
0
        //TODO implement 3 mean variants
        //http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

        public static double TestStatic(IList <IList <double> > samples)
        {
            double total_count = ToolsCollection.CountElements(samples);
            double total_mean  = ToolsMathStatistics.MeanAll(samples);

            //double[] sample_means = ToolsMathStatistics.Means0(samples);
            //double total_mean = ToolsMathStatistics.MedianAll(samples);
            double[] sample_means = ToolsMathStatistics.Medians0(samples);

            double summed_varriance = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                summed_varriance += samples[sample_index].Count * ToolsMath.Sqr(sample_means[sample_index] - total_mean);
            }

            double total_variance = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                for (int measurement_index = 0; measurement_index < samples[sample_index].Count; measurement_index++)
                {
                    total_variance += ToolsMath.Sqr(samples[sample_index][measurement_index] - sample_means[sample_index]);
                }
            }
            double degrees_of_freedom_0 = samples.Count - 1;
            double degrees_of_freedom_1 = total_count - samples.Count;


            double f_statistic = (degrees_of_freedom_1 * summed_varriance) / (degrees_of_freedom_0 * total_variance);

            return(FisherSnedecor.CDF(degrees_of_freedom_0, degrees_of_freedom_1, f_statistic));
        }
        public override bool ComputeRBA(IMarketModelIndicator market_model, double[] result)
        {
            if (previous_1 == 0)
            {
                previous_1 = market_model.CurrentBid;
                previous_2 = market_model.CurrentBid;
            }

            double momentum  = previous_1 - previous_2;
            double error_now = market_model.CurrentBid - (previous_1 + (momentum_weight * momentum));

            error_now_array_sqr_sum = (error_now_array_sqr_sum + ToolsMath.Sqr(error_now) - ToolsMath.Sqr(this.error_now_array[index_error_now % this.error_now_array.Length])) / this.error_now_array.Length;
            error_now_array_sum     = error_now_array_sum + error_now - this.error_now_array[index_error_now % this.error_now_array.Length];

            this.error_now_array[index_error_now % this.error_now_array.Length] = error_now;
            index_error_now++;


            double error_now_sdev = Math.Sqrt(error_now_array_sqr_sum);

            if (error_now_sdev == 0)
            {
                error_now_sdev = double.Epsilon;
            }
            double error_now_z      = error_now / error_now_sdev;
            double error_now_weight = max_error_weight * (1 - Math.Exp(-ToolsMath.Sqr(error_now_z) / expected_error_z));

            result[0] = previous_1 + (momentum * momentum_weight) + (error_now * error_now_weight);
            result[1] = result[0] + (error_now_sdev * 2);
            result[2] = result[0] - (error_now_sdev * 2);
            result[3] = error_now;
            result[4] = error_now_sdev;
            result[5] = error_now_array_sum;
            result[6] = error_now_z;
            result[7] = error_now_weight;
            result[8] = momentum;

            previous_2 = previous_1;
            previous_1 = result[0];

            return(this.error_now_array.Length < market_model.Second1.HistoryCount);
        }
Exemple #6
0
        public override double Test(IList <double> sample_0, IList <double> sample_1)
        {
            double mean_0     = ToolsMathStatistics.Mean(sample_0);
            double mean_1     = ToolsMathStatistics.Mean(sample_1);
            double variance_0 = ToolsMathStatistics.Variance(sample_0, mean_0);
            double variance_1 = ToolsMathStatistics.Variance(sample_0, mean_1);


            double t_statistic = (mean_0 - mean_1) / Math.Sqrt((variance_0 / sample_0.Count) + (variance_1 / sample_1.Count));

            //Welch–Satterthwaite equation:
            double dof_nominator   = ToolsMath.Sqr((variance_0 / sample_0.Count) + (variance_1 / sample_1.Count));
            double dof_denominator =
                (Math.Pow(variance_0, 4) / (sample_0.Count * sample_0.Count * (sample_0.Count - 1))) +
                (Math.Pow(variance_1, 4) / (sample_1.Count * sample_1.Count * (sample_1.Count - 1)));
            double degrees_of_freedom = dof_nominator / dof_denominator;

            StudentT distribution = new StudentT(0.1, 1.0, degrees_of_freedom);

            return(distribution.CumulativeDistribution(-t_statistic));
        }
Exemple #7
0
        public static double TestStatic(IList <IList <double> > samples, IList <double> limits)
        {
            // Create to blocks according to limits
            double[,] table = new double[samples.Count, limits.Count + 1];
            for (int index_0 = 0; index_0 < samples.Count; index_0++)
            {
                for (int index_1 = 0; index_1 < samples[index_0].Count; index_1++)
                {
                    double value = samples[index_0][index_1];


                    //for any of the other bins
                    int limit_index = 0;
                    while ((limit_index < limits.Count) && (limits[limit_index] <= value))
                    {
                        limit_index++;
                    }
                    table[index_0, limit_index]++;
                }
            }

            // Compute test for independance
            double[] sums_0 = ToolsMathCollection.Sums0(table);
            double[] sums_1 = ToolsMathCollection.Sums1(table);
            double   total  = ToolsMathCollection.Sum(sums_0);

            double chi_square_statistic = 0;

            for (int index_0 = 0; index_0 < sums_0.Length; index_0++)
            {
                for (int index_1 = 0; index_1 < sums_1.Length; index_1++)
                {
                    double expectation = (sums_0[index_0] * sums_1[index_1]) / total;
                    chi_square_statistic += (ToolsMath.Sqr(table[index_0, index_1] - expectation) / expectation);
                }
            }
            double degrees_of_freedom = (sums_0.Length - 1) * (sums_1.Length - 1);

            return(ChiSquared.CDF(degrees_of_freedom, chi_square_statistic));
        }
        public static void DistanceTransform2DSlowRBA(ImageRaster2D <bool> mask_image, float[] voxel_size, ImageRaster2D <float> distance_image)
        {
            IRaster2DInteger raster = mask_image.Raster;
            int size_0 = mask_image.Raster.Size0;
            int size_1 = mask_image.Raster.Size1;

            // Apply the transform in the x-direction
            //for (int plane_index = 0; plane_index < size_z * size_y; plane_index++)
            //{
            Parallel.For(0, size_0, index_0 =>
            {
                for (int index_1 = 0; index_1 < size_1; index_1++)
                {
                    float best_distance = float.MaxValue;
                    if (mask_image.GetElementValue(index_0, index_1))
                    {
                        best_distance = 0;
                    }
                    else
                    {
                        for (int index_0_1 = 0; index_0_1 < size_0; index_0_1++)
                        {
                            for (int index_1_1 = 0; index_1_1 < size_1; index_1_1++)
                            {
                                if (mask_image.GetElementValue(index_0_1, index_1_1))
                                {
                                    float distance = ToolsMath.Sqrt(ToolsMath.Sqr((index_0_1 - index_0) * voxel_size[0]) + ToolsMath.Sqr((index_1_1 - index_1) * voxel_size[0]));
                                    if (distance < best_distance)
                                    {
                                        best_distance = distance;
                                    }
                                }
                            }
                        }
                    }
                    distance_image.SetElementValue(index_0, index_1, best_distance);
                }
            });
        }
Exemple #9
0
        public override bool ComputeRBA(IMarketModelIndicator market_model, double[] result)
        {
            if (previous_1 == 0)
            {
                previous_1 = market_model.CurrentBid;
                previous_2 = market_model.CurrentBid;
            }

            double momentum  = previous_1 - previous_2;
            double error_now = market_model.CurrentBid - (previous_1 + (momentum_weight * momentum));

            indicator_error_now[index_indicator_error_now % indicator_error_now.Length] = error_now;
            index_indicator_error_now++;

            double error_now_s = ToolsMathStatistics.StandardDeviation(indicator_error_now);

            if (error_now_s == 0)
            {
                error_now_s = double.Epsilon;
            }
            double error_now_z      = error_now / error_now_s;
            double error_now_weight = max_error_weight * (1 - Math.Exp(-ToolsMath.Sqr(error_now_z) / expected_error_z));

            result[0] = previous_1 + (momentum * momentum_weight) + (error_now * error_now_weight);
            result[1] = result[0] + (error_now_s * 2);
            result[2] = result[0] - (error_now_s * 2);
            result[3] = error_now;
            result[4] = error_now_s;
            result[5] = error_now_z;
            result[6] = error_now_weight;
            result[7] = momentum;

            previous_2 = previous_1;
            previous_1 = result[0];


            return(indicator_error_now.Length < market_model.Second1.HistoryCount);
        }
 private static float Collide(float offset_0, float offset_1, float location_0, float location_1)
 {
     return((ToolsMath.Sqr(location_1) - ToolsMath.Sqr(location_0) + offset_1 - offset_0) / (2.0f * (location_1 - location_0)));
 }
        private static int ComputeDistance(ImageRaster3D <float> distance_image_sqr, int index_0, int index_1, int index_2, int index_axis, float[] locations_axis, float[] start, float[] locations, float[] offsets, int curve_index)
        {
            float location = locations_axis[index_axis];

            while ((curve_index != 0) && (location < start[curve_index]))
            {
                curve_index--;
            }
            distance_image_sqr.SetElementValue(index_0, index_1, index_2, offsets[curve_index] + ToolsMath.Sqr(location - locations[curve_index]));
            return(curve_index);
        }
        //public static void DistanceTransformRBA(ImageRaster3D<bool> mask_image, ImageRaster3D<float> distance_image, float[] voxel_size)
        //{
        //    int size_x = mask_image.Raster.SizeX;
        //    int size_y = mask_image.Raster.SizeY;
        //    int size_z = mask_image.Raster.SizeZ;
        //    /* Apply the transform in the x-direction. */
        //    Parallel.For(0, size_z * size_y, plane_index =>
        //    {

        //        int z_index = plane_index / size_y;
        //        int y_index = plane_index - z_index * size_y;
        //        int element_index = size_x * ((size_y * z_index) + y_index);

        //        /* Project distances forward. */
        //        float distance = float.MaxValue;
        //        for (int x_index = 0; x_index < size_x; x_index++)
        //        {
        //            distance += voxel_size[0];
        //            /* The voxel value is true; the distance should be 0. */
        //            if (mask_image[element_index + x_index])
        //            {
        //                distance = 0.0f;
        //            }
        //            distance_image[element_index + x_index] = distance;
        //        }

        //        /* Project distances backward. From this point on we don't have to
        //         * read the source data anymore, since all object voxels now have a
        //         * distance assigned. */
        //        distance = float.MaxValue;
        //        for (int x_index = size_x - 1; x_index >= 0; x_index--)
        //        {
        //            distance += voxel_size[0];
        //            /* The voxel value is 0; the distance should be 0 too. */
        //            if (distance_image[element_index + x_index] == 0.0f)
        //            {
        //                distance = 0.0f;
        //            }
        //            /* Calculate the shortest distance in the row. */
        //            distance_image[element_index + x_index] = Math.Min(distance_image[element_index + x_index], distance);
        //        }
        //    });

        //    /* Apply the transform in the y-direction. */
        //    float size_1_sqr = ToolsMath.Sqr(voxel_size[1]);
        //    float size_1_inv = 1.0f / voxel_size[1];

        //    Parallel.For(0, size_z * size_x, plane_index =>
        //    {
        //        int z_index = plane_index / size_x;
        //        int x_index = plane_index - z_index * size_x;
        //        int element_index = z_index * size_y * size_x + x_index;
        //        float[] temp_1 = new float[size_y];
        //        /* Copy the column and square the distances. */
        //        for (int y_index = 0; y_index < size_y; y_index++)
        //        {
        //            temp_1[y_index] = ToolsMath.Sqr(distance_image[element_index + y_index * size_x]);
        //        }

        //        /* Calculate the smallest squared distance in 2D. */
        //        for (int y_index = 0; y_index < size_y; y_index++)
        //        {

        //            /* Calculate the smallest search range, i.e. y-im to y+im. */
        //            float distance = temp_1[y_index];
        //            if (distance == 0)
        //            {
        //                continue;
        //            }
        //            int im = (int)(size_1_inv * ToolsMath.Sqrt(distance));
        //            if (im == 0)
        //            {
        //                continue;
        //            }

        //            for (int j = Math.Max(0, y_index - im); j < Math.Min(size_y, y_index + im); j++)
        //            {
        //                if (temp_1[j] < distance) distance = Math.Min(distance, temp_1[j] + size_1_sqr * ToolsMath.Sqr(j - y_index));
        //            }

        //            distance_image[element_index + y_index * size_x] = distance;
        //        }
        //    });


        //    /* Apply the transform in the z-direction. */
        //    float size_2_sqr = ToolsMath.Sqr(voxel_size[2]);
        //    float size_2_inv = 1.0f / voxel_size[2];

        //    Parallel.For(0, size_y * size_x, plane_index =>
        //    {
        //        float[] temp_2 = new float[size_z];
        //        int y_index = plane_index / size_x;
        //        int x_index = plane_index - (y_index * size_x);
        //        int element_index = y_index * size_x + x_index;

        //        /* Copy the column. */
        //        for (int z_index = 0; z_index < size_z; z_index++)
        //        {
        //            temp_2[z_index] = distance_image[element_index + z_index * size_y * size_x];
        //        }

        //        /* Calculate the smallest squared distance in 3D. */
        //        for (int z_index = 0; z_index < size_z; z_index++)
        //        {
        //            /* Calculate smallest search range, i.e. z-im to z+im. */
        //            float distance = temp_2[z_index];
        //            if (distance == 0)
        //            {
        //                continue;
        //            }
        //            int im = (int)(size_2_inv * ToolsMath.Sqrt(distance));
        //            if (im == 0)
        //            {
        //                continue;
        //            }

        //            for (int j = Math.Max(0, z_index - im); j < Math.Min(size_z, z_index + im); j++)
        //            {
        //                if (temp_2[j] < distance) distance = Math.Min(distance, temp_2[j] + size_2_sqr * ToolsMath.Sqr(j - z_index));
        //            }

        //            distance_image[element_index + z_index * size_x * size_y] = distance;
        //        }
        //    });
        //}

        public static void DistanceTransform3DMediumRBA(ImageRaster3D <bool> mask_image, float[] voxel_size, ImageRaster3D <float> distance_image)
        {
            IRaster3DInteger raster = mask_image.Raster;
            int size_0 = mask_image.Raster.Size0;
            int size_1 = mask_image.Raster.Size1;
            int size_2 = mask_image.Raster.Size2;

            float[] locations_0 = new float[size_0];
            float[] locations_1 = new float[size_1];
            float[] locations_2 = new float[size_2];

            Parallel.For(0, size_0, index_0 =>
            {
                locations_0[index_0] = index_0 * voxel_size[0];
            });
            Parallel.For(0, size_1, index_1 =>
            {
                locations_1[index_1] = index_1 * voxel_size[1];
            });
            Parallel.For(0, size_2, index_2 =>
            {
                locations_2[index_2] = index_2 * voxel_size[2];
            });

            // Apply the transform in the x-direction
            //for (int plane_index = 0; plane_index < size_z * size_y; plane_index++)
            //{
            Parallel.For(0, size_2 * size_1, plane_index =>
            {
                int index_2 = plane_index / size_1;
                int index_1 = plane_index % size_1;

                // Upwards pass
                float added_distance = float.PositiveInfinity;
                for (int index_0 = 0; index_0 < size_0; index_0++)
                {
                    int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                    added_distance   += voxel_size[0];
                    /* The voxel value is true; the distance should be 0. */
                    if (mask_image[element_index])
                    {
                        added_distance = 0.0f;
                    }
                    distance_image[element_index] = ToolsMath.Sqr(added_distance);
                }


                if (distance_image.GetElementValue(size_0 - 1, index_1, index_2) < float.PositiveInfinity)
                {
                    // Downwards pass
                    added_distance = float.PositiveInfinity;
                    for (int index_0 = size_0 - 1; index_0 >= 0; index_0--)
                    {
                        int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                        added_distance   += voxel_size[0];
                        /* The voxel value is 0; the distance should be 0 too. */
                        if (distance_image[element_index] == 0.0f)
                        {
                            added_distance = 0.0f;
                        }
                        /* Calculate the shortest distance in the row. */
                        distance_image[element_index] = Math.Min(distance_image[element_index], ToolsMath.Sqr(added_distance));
                    }
                }
            });


            // Apply the transform in the y-direction
            //for (int plane_index = 0; plane_index < size_0 * size_2; plane_index++)
            //{
            Parallel.For(0, size_2 * size_0, plane_index =>
            {
                int index_0 = plane_index % size_0;
                int index_2 = plane_index / size_0;

                float[] temp_1 = new float[size_1];
                for (int index_1 = 0; index_1 < size_1; index_1++)
                {
                    temp_1[index_1] = distance_image.GetElementValue(index_0, index_1, index_2);
                }

                // Upwards pass
                for (int index_1 = 0; index_1 < size_1; index_1++)
                {
                    int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                    for (int index_1_inner = index_1 + 1; index_1_inner < size_1; index_1_inner++)
                    {
                        if (distance_image.GetElementValue(index_0, index_1_inner, index_2) <= distance_image[element_index])
                        {
                            break;
                        }
                        float distance = distance_image[element_index] + ToolsMath.Sqr((index_1_inner - index_1) * voxel_size[1]);
                        if (distance < temp_1[index_1_inner])
                        {
                            temp_1[index_1_inner] = distance;
                        }
                    }
                }

                //Downwards pass
                for (int index_1 = size_1 - 1; index_1 >= 0; index_1--)
                {
                    int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                    for (int index_1_inner = index_1 - 1; index_1_inner >= 0; index_1_inner--)
                    {
                        if (distance_image.GetElementValue(index_0, index_1_inner, index_2) <= distance_image[element_index])
                        {
                            break;
                        }
                        float distance = distance_image[element_index] + ToolsMath.Sqr((index_1 - index_1_inner) * voxel_size[1]);
                        if (distance < temp_1[index_1_inner])
                        {
                            temp_1[index_1_inner] = distance;
                        }
                    }
                }

                for (int index_1 = 0; index_1 < size_1; index_1++)
                {
                    distance_image.SetElementValue(index_0, index_1, index_2, temp_1[index_1]);
                }
            });



            // Apply the transform in the z-direction. */
            //for (int plane_index = 0; plane_index < size_x * size_y; plane_index++)
            //{
            Parallel.For(0, size_1 * size_0, plane_index =>
            {
                int index_0    = plane_index % size_0;
                int index_1    = plane_index / size_0;
                float[] temp_2 = new float[size_2];
                for (int index_2 = 0; index_2 < size_2; index_2++)
                {
                    temp_2[index_2] = distance_image.GetElementValue(index_0, index_1, index_2);
                }

                // Upwards_pass
                for (int index_2 = 0; index_2 < size_2; index_2++)
                {
                    int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                    for (int index_2_inner = index_2 + 1; index_2_inner < size_2; index_2_inner++)
                    {
                        if (distance_image.GetElementValue(index_0, index_1, index_2_inner) <= distance_image[element_index])
                        {
                            break;
                        }
                        float distance = distance_image[element_index] + ToolsMath.Sqr((index_2_inner - index_2) * voxel_size[2]);
                        if (distance < temp_2[index_2_inner])
                        {
                            temp_2[index_2_inner] = distance;
                        }
                    }
                }

                // Downwards pass
                for (int index_2 = size_2 - 1; index_2 >= 0; index_2--)
                {
                    int element_index = raster.GetElementIndex(index_0, index_1, index_2);
                    for (int index_2_inner = index_2 - 1; index_2_inner >= 0; index_2_inner--)
                    {
                        if (distance_image.GetElementValue(index_0, index_1, index_2_inner) <= distance_image[element_index])
                        {
                            break;
                        }
                        float distance = distance_image[element_index] + ToolsMath.Sqr((index_2 - index_2_inner) * voxel_size[2]);
                        if (distance < temp_2[index_2_inner])
                        {
                            temp_2[index_2_inner] = distance;
                        }
                    }
                }

                //Fill and root
                for (int index_2 = 0; index_2 < size_2; index_2++)
                {
                    distance_image.SetElementValue(index_0, index_1, index_2, ToolsMath.Sqrt(temp_2[index_2]));
                }
            });
        }