public static async Task <BRAZILmodelDataSource> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;
            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));

            var timeAxis = Enumerable.Range(0, 47).ToArray();

            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinousYears(referenceYear),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator());
            var latIntegrator = await latIntegratorTask;
            var lonIntegrator = await lonIntegratorTask;

            var baseNodeUncertainty         = new NoBaseUncertaintyProvider();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);

            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(timeIntegrator, latIntegrator, lonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, coverageCheckUncertaintyEvaluator);

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, true);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);
            var scaledAggregator     = new Microsoft.Research.Science.FetchClimate2.ValueAggregators.LinearTransformDecorator(dataContext, clusteringAggregator);

            gridAggregator.SetMissingValue("RoadDensityData", -9999.0);
            gridAggregator.SetMissingValue("Deforestation", -9999.0);

            return(new BRAZILmodelDataSource(dataContext, variablePresenceCheckEvaluator, scaledAggregator));
        }
Exemple #2
0
        public static async Task <CpcDataHandler> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;
            var timeAxis          = await dataContext.GetDataAsync("time");

            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinuousDays(new DateTime(1948, 1, 1)),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator()
                );
            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));


            var latIntegrator = await latIntegratorTask;
            var lonIntegrator = await lonIntegratorTask;

            var baseNodeUncertainty         = new CpcBaseUnceratinty();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);

            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(timeIntegrator, latIntegrator, lonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, coverageCheckUncertaintyEvaluator);

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, true);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);
            var scaledAggregator     = new Microsoft.Research.Science.FetchClimate2.ValueAggregators.LinearTransformDecorator(dataContext, clusteringAggregator);


            return(new CpcDataHandler(dataContext, variablePresenceCheckEvaluator, scaledAggregator));
        }
Exemple #3
0
        public static async Task <DataHandler> CreateAsync(IStorageContext dataContext)
        {
            IScatteredPointContextBasedLinearWeightProviderOnSphere <IDelaunay_Voronoi> weightsProvider = new AlexNNIAdapter();
            IAsyncMap <INodes, IDelaunay_Voronoi> interpolationContextFactory = new AlexNNIContextProvider();

            //NOTE: interpolation context is cached in the produced interpolators (e.g. Delaunay triangulation is computed only once for each nodes set)
            //We can use one cache for all of the requests (cache is not cleaned) as we use AllStationsStationLocator which returns all stations for any request
            IScatteredPointsLinearInterpolatorOnSphereFactory pointsInterpolatorOnSphereFactory = new CachingLinearWeightsProviderFactory2 <IDelaunay_Voronoi>(weightsProvider, interpolationContextFactory);

            int stationsCount = dataContext.StorageDefinition.DimensionsLengths["stations"];
            var timeAxis      = await dataContext.GetDataAsync("time");

            ITimeAxisAvgProcessing timeAxisIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.DateTimeMoments(),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator());
            IStationLocator stationLocator = new AllStationsStationLocator(stationsCount);

            ICellRequestMapFactory <RealValueNodes> timeSeriesAveragerFactory = (await TimeIntegratorBasedAveragerFactory.CreateAsync(dataContext, timeAxisIntegrator, stationLocator));
            ICellRequestMap <RealValueNodes>        timeSeriesAverager        = await timeSeriesAveragerFactory.CreateAsync();

            //NOTE: Here we engage caching of timeseries. Timeseries is cached for all cells having the same time segment. It is acheived by HashBasedTimeSegmentOnlyConverter
            ICellRequestMapFactory <RealValueNodes> cachingTimeSeriesAveragerFactory = new CellRequestMapCachingFactory <RealValueNodes>(timeSeriesAverager, new HashBasedTimeSegmentOnlyConverter());

            ILinearCombintaionContextFactory compContextFactory = new LinearWeightsContextFactoryFacade <RealValueNodes>(pointsInterpolatorOnSphereFactory, cachingTimeSeriesAveragerFactory);

            //NOTE: Hege caching is engaged as well. We cache the variogram for the cells with the same corresponding node set.
            IVariogramProvider        lmVariogramFitter                    = new LmDotNetVariogramProvider();
            IVariogramProviderFactory variogramProviderFactory             = new VariogramProviderCachingFactory(lmVariogramFitter);
            IUncertaintyEvaluatorOfLinearCombination uncertatintyEvaluator = new PointsGausianFieldUncertaintyEvaluator(variogramProviderFactory);

            return(new DataHandler(dataContext, compContextFactory, uncertatintyEvaluator));
        }
        public static async Task <GenericLinearGridDateTimeMomentsDataHandler> CreateAsync(IStorageContext dataContext)
        {
            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                await TimeAxisAutodetection.GetTimeAxisAsync(dataContext),
                new TimeAxisProjections.DateTimeMoments(),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.IndividualObsCoverageEvaluator());

            var a = await GenericLinearGridDataHandlerHelper.EasyConstructAsync(dataContext, timeIntegrator);

            var uncertatintyEvaluator = a.Item1;
            var valuesAggregator      = a.Item2;

            return(new GenericLinearGridDateTimeMomentsDataHandler(dataContext, uncertatintyEvaluator, valuesAggregator));
        }
        public static async Task <CESM1BGCDataHandler> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;

            var timeAxis = await dataContext.GetDataAsync("time");

            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinuousDays(new DateTime(2005, 1, 1)),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator()
                );

            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));

            var latIntegrator = await latIntegratorTask;
            var lonIntegrator = await lonIntegratorTask;

            var thinningTimeIntegrator = new TimeAxisIntegratorThinningDecorator(timeIntegrator);
            var thinningLatIntegrator  = new SpatGridIntegatorThinningDecorator(latIntegrator);
            var thinningLonIntegrator  = new SpatGridIntegatorThinningDecorator(lonIntegrator);

            var baseNodeUncertainty         = new NoBaseUncertaintyProvider();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);

            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(thinningTimeIntegrator, thinningLatIntegrator, thinningLonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var scaledUncertaintyEvaluator        = new Microsoft.Research.Science.FetchClimate2.UncertaintyEvaluators.LinearTransformDecorator(coverageCheckUncertaintyEvaluator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, scaledUncertaintyEvaluator);

            //we do not need DegK to DegC in uncertainty as uncertainty is based on defference and does not depend on constant ofsets
            scaledUncertaintyEvaluator.SetTranform("pr", new Func <double, double>(v => v * 2592000.0)); //kg/m^2/s to mm/month (assuming month is 30 days)

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, false);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);
            var scaledAggregator     = new Microsoft.Research.Science.FetchClimate2.ValueAggregators.LinearTransformDecorator(dataContext, clusteringAggregator);

            scaledAggregator.SetAdditionalTranform("tas", new Func <double, double>(v => v - 273.15));   // DegK to DegC
            scaledAggregator.SetAdditionalTranform("pr", new Func <double, double>(v => v * 2592000.0)); //kg/m^2/s to mm/month (assuming month is 30 days)

            return(new CESM1BGCDataHandler(dataContext, variablePresenceCheckEvaluator, scaledAggregator));
        }
Exemple #6
0
        public static async Task <GFDLDataHandler> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;
            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));

            var latIntegrator  = await latIntegratorTask;
            var lonIntegrator  = await lonIntegratorTask;
            var timeAxis       = ((double[])(dataContext.GetDataAsync(timeAxisName).Result)).Select(elem => (elem - 15.5) * 0.9863013698630137).ToArray(); // Shifting middle of the interval  to the beginning of the interval and convert from 365 to 360 years day
            int startYear      = GetStartYear(dataContext, timeAxisName);
            int startDay       = GetStartDay(dataContext, timeAxisName);
            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinuousDays360(startYear, startDay),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator())
            ;     // units = days since 2001-01-01 00:00:00

            var baseNodeUncertainty         = new NoBaseUncertaintyProvider();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);


            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(timeIntegrator, latIntegrator, lonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var scaledUncertaintyEvaluator        = new Microsoft.Research.Science.FetchClimate2.UncertaintyEvaluators.LinearTransformDecorator(coverageCheckUncertaintyEvaluator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, scaledUncertaintyEvaluator);

            scaledUncertaintyEvaluator.SetTranform(PRECIPITATION, v => v * 2592000.0);// overriding variable metadata to convert kg/m^2/s to mm/month (assuming month is 30 days)
            //we do not need DegK to DegC in uncertainty as uncertainty is based on defference and does not depend on constant ofsets

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, true);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);
            var scaledAggregator     = new Microsoft.Research.Science.FetchClimate2.ValueAggregators.LinearTransformDecorator(dataContext, clusteringAggregator);

            scaledAggregator.SetAdditionalTranform(PRECIPITATION, v => v * 2592000.0); // overriding variable metadata to convert kg/m^2/s to mm/month (assuming month is 30 days)
            scaledAggregator.SetAdditionalTranform(TEMPERATURE, v => v - 273.15);      // K to C

            return(new GFDLDataHandler(dataContext, variablePresenceCheckEvaluator, scaledAggregator));
        }
Exemple #7
0
        public static async Task <HADCM3DataHandler> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;
            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));

            var timeAxis       = ((double[])(await dataContext.GetDataAsync("time"))).Select(elem => elem - 15).ToArray();//shifting middle of the interval (30 days length in total) to the beginning of the interval
            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinuousDays360(1960, 1),//0 index axis value is 14400 which is 1/1/2000 12:00:00 AM
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator()
                );
            var latIntegrator = await latIntegratorTask;
            var lonIntegrator = await lonIntegratorTask;

            var baseNodeUncertainty         = new NoBaseUncertaintyProvider();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);


            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(timeIntegrator, latIntegrator, lonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var scaledUncertaintyEvaluator        = new Microsoft.Research.Science.FetchClimate2.UncertaintyEvaluators.LinearTransformDecorator(coverageCheckUncertaintyEvaluator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, scaledUncertaintyEvaluator);

            scaledUncertaintyEvaluator.SetTranform("pr", p => p * 2592000);
            //we do not need DegK to DegC in uncertainty as uncertainty is based on defference and does not depend on constant ofsets

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, false);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);
            var scaledAggregator     = new Microsoft.Research.Science.FetchClimate2.ValueAggregators.LinearTransformDecorator(dataContext, clusteringAggregator);

            scaledAggregator.SetAdditionalTranform("pr", p => p * 2592000);
            scaledAggregator.SetAdditionalTranform("tas", t => t - 273.15);

            return(new HADCM3DataHandler(dataContext, variablePresenceCheckEvaluator, scaledAggregator));
        }
Exemple #8
0
        public void TestProjections()
        {
            int[]    data     = new int[] { 0, 1, 2, 3, 4, 5, 6, 7 };
            DateTime baseTime = new DateTime(2009, 1, 1);
            var      handler  = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                data,
                new TimeAxisProjections.ContinousYears(baseTime.Year),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator());
            var res1 = handler.GetTempIPs(new TimeSegment(2009, 2009, 1, 365, 0, 24));

            Assert.AreEqual(1, res1.Weights.Length);
            Assert.AreEqual(1.0, res1.Weights[0]);
            Assert.AreEqual(0, res1.Indices[0]);

            res1 = handler.GetTempIPs(new TimeSegment(2015, 2015, 1, 365, 0, 24));
            Assert.AreEqual(1, res1.Weights.Length);
            Assert.AreEqual(1.0, res1.Weights[0]);
            Assert.AreEqual(6, res1.Indices[0]);

            res1 = handler.GetTempIPs(new TimeSegment(2016, 2016, 1, 365, 0, 24));
            Assert.AreEqual(0, res1.Weights.Length);
        }
Exemple #9
0
        public static async Task <MLDDataHandler> CreateAsync(IStorageContext dataContext)
        {
            var storageDefinition = dataContext.StorageDefinition;
            var latIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLatName(storageDefinition));
            var lonIntegratorTask = LinearIntegratorsFactory.SmartConstructAsync(dataContext, IntegratorsFactoryHelpers.AutodetectLonName(storageDefinition));

            var timeAxis = await dataContext.GetDataAsync("days since 1998-1-1 0:0:0");

            var timeIntegrator = new TimeAxisAvgProcessing.TimeAxisAvgFacade(
                timeAxis,
                new TimeAxisProjections.ContinuousDays(new DateTime(1998, 1, 1)),
                new WeightProviders.StepFunctionInterpolation(),
                new DataCoverageEvaluators.ContinousMeansCoverageEvaluator());

            var latIntegrator = await latIntegratorTask;
            var lonIntegrator = await lonIntegratorTask;

            var thinningLatIntegrator  = new SpatGridIntegatorThinningDecorator(latIntegrator);
            var thinningLonIntegrator  = new SpatGridIntegatorThinningDecorator(lonIntegrator);
            var thinningTimeIntegrator = new TimeAxisIntegratorThinningDecorator(timeIntegrator);

            var baseNodeUncertainty         = new NoBaseUncertaintyProvider();
            var temporalVarianceCalculaator = new LinearCombination1DVarianceCalc(new StorageContextMetadataTimeVarianceExtractor(storageDefinition), timeIntegrator);
            var spatialVarianceCalculator   = new LinearCombinationOnSphereVarianceCalculator(new StorageContextMetadataSpatialVarianceExtractor(storageDefinition), latIntegrator, lonIntegrator);


            var gaussianFieldUncertaintyEvaluator = new SequentialTimeSpatialUncertaintyEvaluatorFacade(thinningTimeIntegrator, thinningLatIntegrator, thinningLonIntegrator, temporalVarianceCalculaator, spatialVarianceCalculator, baseNodeUncertainty);
            var coverageCheckUncertaintyEvaluator = new GridUncertaintyConventionsDecorator(gaussianFieldUncertaintyEvaluator, latIntegrator, lonIntegrator, timeIntegrator);
            var variablePresenceCheckEvaluator    = new VariablePresenceCheckDecorator(dataContext.StorageDefinition, coverageCheckUncertaintyEvaluator);

            var gridAggregator       = new GridMeanAggregator(dataContext, timeIntegrator, latIntegrator, lonIntegrator, true);
            var clusteringAggregator = new GridClusteringDecorator(dataContext.StorageDefinition, gridAggregator, timeIntegrator, latIntegrator, lonIntegrator);

            gridAggregator.SetMissingValue("data", -9999);

            return(new MLDDataHandler(dataContext, variablePresenceCheckEvaluator, clusteringAggregator));
        }