private void SetUpTree() { alice = new Thing("Alice"); bob = new Thing("Bob"); charlie = new Thing("Charlie"); dave = new Thing("Dave"); edna = new Thing("Edna"); frank = new Thing("Frank"); george = new Thing("George"); harry = new Thing("Harry"); alice.AddChild(bob); alice.AddChild(charlie); alice.AddChild(dave); dave.AddChild(edna); dave.AddChild(frank); edna.AddChild(george); }
//fill this method in with code which will execute //once for each cycle of the engine public override void Fire() { Init(); //be sure to leave this here ModuleView naSource = theNeuronArray.FindModuleByLabel("UKS"); if (naSource == null) { return; } uks = (ModuleUKS)naSource.TheModule; Thing mentalModel = uks.GetOrAddThing("MentalModel", "Visual"); Thing currentlyVisibleParent = uks.GetOrAddThing("CurrentlyVisible", "Visual"); Thing motionParent = uks.GetOrAddThing("Motion", "Visual"); //Things which disappeared in the last cycle need special treatment to remove from mental model & relationships but not the known object foreach (Thing t in motionParent.Children) { if (t.Label.Contains("Disappeared")) { Thing thingToRemove = t.Children[0]; for (int i = thingToRemove.Children.Count - 1; i >= 0; i--) { Thing child = thingToRemove.Children[i]; thingToRemove.RemoveChild(child); } uks.DeleteThing(thingToRemove); } } uks.DeleteAllChilden(motionParent); //build little lists of things which moved or appeared so we can also be left with things which things which disappeared List <Thing> matchedThings = new List <Thing>(); List <Thing> movedThings = new List <Thing>(); List <Thing> movedThingsNew = new List <Thing>(); List <Thing> newThings = new List <Thing>(); foreach (Thing visibleArea in currentlyVisibleParent.Children) { Thing matchedThing = null; foreach (Thing storedArea in mentalModel.Children) { Debug.Assert(visibleArea.Children.Count == 1); if (storedArea.Children.Count != 1) { continue; } if (storedArea.Children[0] == visibleArea.Children[0]) //are these instances of the same object type? { var values = uks.GetValues(visibleArea); var prevValues = uks.GetValues(storedArea); Point c1 = new Point(uks.GetValue(visibleArea, "CtrX+"), uks.GetValue(visibleArea, "CtrY+")); Point c2 = new Point(uks.GetValue(storedArea, "CtrX+"), uks.GetValue(storedArea, "CtrY+")); float dist = (float)(c1 - c2).Length; if (dist < (uks.GetValue(visibleArea, "Siz+") + uks.GetValue(storedArea, "Siz+")) / 2) { //these are probably the same object...is motion detected? var changes = uks.GetChangedValues(visibleArea, storedArea); if (changes.ContainsKey("Siz+") || changes.ContainsKey("CtrX+") || changes.ContainsKey("CtrY+") || changes.ContainsKey("Ang+")) { Thing t1 = uks.AddThing("Moved", motionParent); t1.AddChild(storedArea); foreach (var change in changes) { uks.SetValue(t1, change.Value, change.Key, 0); } movedThings.Add(storedArea); movedThingsNew.Add(visibleArea); } matchedThing = storedArea; goto objectMatch; } } } //there is no matching object, this just appeared! newThings.Add(visibleArea); Thing m = uks.AddThing("Appeared*", motionParent); m.AddChild(visibleArea); continue; objectMatch :; if (matchedThing != null) { matchedThings.Add(matchedThing); } } for (int i = mentalModel.Children.Count - 1; i >= 0; i--) { Thing t = mentalModel.Children[i]; if (!matchedThings.Contains(t)) { Thing m = uks.AddThing("Disappeared*", motionParent); m.AddChild(t); mentalModel.RemoveChild(t); Thing attn = uks.Labeled("ATTN"); if (attn != null) { attn.RemoveReference(t); } } } if (motionParent.Children.Count > 1) { //analyze motion //if only a few objects moved, they moved //if all objects moved in same direction, it's becaue POV turned //if all objects moved in directions radiating to or from a point, POV is moving toward or away from that point. //TODO if all objects moved in same direction but varying magnitudes, POV has moved sideways...further objects move less //calculate the motion vector for all associated objects List <Segment> motions = new List <Segment>(); foreach (Thing t in motionParent.Children) { if (t.Label.StartsWith("Moved")) //ignore appeared/disappeared { var values = uks.GetValues(t); PointPlus p = new PointPlus(0, (float)0); if (values.ContainsKey("CtrX++")) { p.X = values["CtrX++"]; } if (values.ContainsKey("CtrY++")) { p.Y = values["CtrY++"]; } Segment s = new Segment(); s.P1 = p; //This is a relative motion value values = uks.GetValues(t.Children[0]); p = new PointPlus(0, (float)0); if (values.ContainsKey("CtrX+")) { p.X = values["CtrX+"]; } if (values.ContainsKey("CtrY+")) { p.Y = values["CtrY+"]; } s.P2 = p; //This is an absolute position motions.Add(s); } } if (motions.Count > 1) { //do most move the same? ANGULAR POV MOTION //TODO: use clustering to get most likely motions PointPlus pMotion = new PointPlus(motions[0].P1); int count = 0; foreach (Segment s in motions) { if (s.P1.Near(pMotion, .1f)) { count++; } } if (count > motions.Count - 2) //only two objects can be exceptions { for (int i = 0; i < motions.Count; i++) { if (motions[i].P1.Near(pMotion, .1f)) { motions.RemoveAt(i); Thing t = motionParent.Children[i]; uks.DeleteAllChilden(t); uks.DeleteThing(t); i--; } else { //an object has its own motion too...subtract off the POV motion Thing t = motionParent.Children[i]; float x = uks.GetValue(t, "CtrX+"); float y = uks.GetValue(t, "CtrY+"); x -= motions[i].P1.X; y -= motions[i].P1.Y; uks.SetValue(t, x, "CtrX", 3); uks.SetValue(t, y, "CtrY", 3); } } Thing POVMotion = uks.AddThing("POVMotion*", "Motion"); uks.SetValue(POVMotion, pMotion.X, "CtrX", 3); uks.SetValue(POVMotion, pMotion.Y, "CtrY", 3); } else { //this is not a rotation...is it a motion toward/away? //TODO there are no exceptions allowed foreach (var m in motions) { m.P1 += m.P2; } List <PointPlus> intersections = new List <PointPlus>(); for (int i = 0; i < motions.Count; i++) { for (int j = i + 1; j < motions.Count; j++) { Utils.FindIntersection(motions[i].P1, motions[i].P2, motions[j].P1, motions[j].P2, out Point intersection); intersections.Add(intersection); } } //testing clustering... //TODO try all this with points of interest rather than centers double[][] rawData = new double[intersections.Count][]; for (int i = 0; i < intersections.Count; i++) { rawData[i] = new double[2] { intersections[i].X, intersections[i].Y } } ; int[] clusters = KMeansClustering.Cluster(rawData, 2); //now ask if there is a single cluster with most of the data PointPlus aveIntersection = new PointPlus(); for (int i = 0; i < intersections.Count; i++) { aveIntersection.X += intersections[i].X; aveIntersection.Y += intersections[i].Y; } aveIntersection.X /= intersections.Count; aveIntersection.Y /= intersections.Count; float dist = 0; float dir = 0; for (int i = 0; i < intersections.Count; i++) { dist += (intersections[i] - aveIntersection).R; //moving toward or away? dir += (motions[i].P1 - intersections[i]).R - (motions[i].P2 - intersections[i]).R; } dist /= intersections.Count; dir /= intersections.Count; if (dist < 10) // ??? { uks.DeleteAllChilden(motionParent); Thing POVMotion = uks.AddThing("POVMotion*", "Motion"); uks.SetValue(POVMotion, aveIntersection.X, "CtrX", 3); uks.SetValue(POVMotion, aveIntersection.Y, "CtrY", 3); uks.SetValue(POVMotion, dir, "CtrZ", 3); } } } } //transfer currently visible objects to previously visible Debug.Assert(movedThings.Count == movedThingsNew.Count); for (int i = 0; i < movedThings.Count; i++) { uks.SetValue(movedThings[i], uks.GetValue(movedThingsNew[i], "CtrX+"), "CtrX", 0); uks.SetValue(movedThings[i], uks.GetValue(movedThingsNew[i], "CtrY+"), "CtrY", 0); uks.SetValue(movedThings[i], uks.GetValue(movedThingsNew[i], "Siz+"), "Siz", 0); uks.SetValue(movedThings[i], uks.GetValue(movedThingsNew[i], "Ang+"), "Ang", 0); } foreach (var t in newThings) { t.AddParent(mentalModel); //TODO, this may leave multiple things in the mental model with the same label } //This hack puts predictable labels on things in the mental model so we can select them more easily in the description //Area0-n from top->bottom, left->right List <sortable> vals = new List <sortable>(); foreach (Thing storedArea in mentalModel.Children) { var values = uks.GetValues(storedArea); vals.Add(new sortable { t = storedArea, x = values["CtrX+"], y = values["CtrY+"], }); } vals = vals.OrderBy(w => w.y * 1000 + w.x).ToList(); for (int i = 0; i < vals.Count; i++) { vals[i].t.Label = "Area" + i; } //for debugging: //if there is a new image, cancel the existing relationships ModuleImageFile mif = (ModuleImageFile)FindModule("ImageFile"); if (mif == null) { return; } string curPath = mif.GetFilePath(); if (curPath != prevPath) { foreach (Thing t in mentalModel.Children) { var refs = t.GetRelationshipsByType(null, null); foreach (Link ref1 in refs) { t.RemoveReference(ref1.T); } } prevPath = curPath; } //if you want the dlg to update, use the following code whenever any parameter changes // UpdateDialog(); }