Exemple #1
0
        /// <summary>
        /// Compute the upper bound on time before two shapes penetrate. Time is represented as a fraction
        /// between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
        /// non-tunneling collision. If you change the time interval, you should call this function again.
        /// Note: use Distance to compute the contact point and normal at the time of impact.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="input"></param>
        public void GetTimeOfImpact(TOIOutput output, TOIInput input)
        {
            // CCD via the local separating axis method. This seeks progression
            // by computing the largest time at which separation is maintained.

            ++ToiCalls;

            output.State = TOIOutputState.Unknown;
            output.T = input.tMax;

            Distance.DistanceProxy proxyA = input.ProxyA;
            Distance.DistanceProxy proxyB = input.ProxyB;

            sweepA.Set(input.SweepA);
            sweepB.Set(input.SweepB);

            // Large rotations can make the root finder fail, so we normalize the
            // sweep angles.
            sweepA.Normalize();
            sweepB.Normalize();

            float tMax = input.tMax;

            float totalRadius = proxyA.Radius + proxyB.Radius;
            // djm: whats with all these constants?
            float target = MathUtils.Max(Settings.LINEAR_SLOP, totalRadius - 3.0f * Settings.LINEAR_SLOP);
            const float tolerance = 0.25f * Settings.LINEAR_SLOP;

            Debug.Assert(target > tolerance);

            float t1 = 0f;
            int iter = 0;

            cache.Count = 0;
            distanceInput.ProxyA = input.ProxyA;
            distanceInput.ProxyB = input.ProxyB;
            distanceInput.UseRadii = false;

            // The outer loop progressively attempts to compute new separating axes.
            // This loop terminates when an axis is repeated (no progress is made).
            for (; ; )
            {
                sweepA.GetTransform(xfA, t1);
                sweepB.GetTransform(xfB, t1);
                // System.out.printf("sweepA: %f, %f, sweepB: %f, %f\n",
                // sweepA.c.x, sweepA.c.y, sweepB.c.x, sweepB.c.y);
                // Get the distance between shapes. We can also use the results
                // to get a separating axis
                distanceInput.TransformA = xfA;
                distanceInput.TransformB = xfB;
                pool.GetDistance().GetDistance(distanceOutput, cache, distanceInput);

                // System.out.printf("Dist: %f at points %f, %f and %f, %f.  %d iterations\n",
                // distanceOutput.distance, distanceOutput.pointA.x, distanceOutput.pointA.y,
                // distanceOutput.pointB.x, distanceOutput.pointB.y,
                // distanceOutput.iterations);

                // If the shapes are overlapped, we give up on continuous collision.
                if (distanceOutput.Distance <= 0f)
                {
                    // System.out.println("failure, overlapped");
                    // Failure!
                    output.State = TOIOutputState.Overlapped;
                    output.T = 0f;
                    break;
                }

                if (distanceOutput.Distance < target + tolerance)
                {
                    // System.out.println("touching, victory");
                    // Victory!
                    output.State = TOIOutputState.Touching;
                    output.T = t1;
                    break;
                }

                // Initialize the separating axis.
                fcn.Initialize(cache, proxyA, sweepA, proxyB, sweepB, t1);

                // Compute the TOI on the separating axis. We do this by successively
                // resolving the deepest point. This loop is bounded by the number of
                // vertices.
                bool done = false;
                float t2 = tMax;
                int pushBackIter = 0;
                for (; ; )
                {

                    // Find the deepest point at t2. Store the witness point indices.
                    float s2 = fcn.FindMinSeparation(indexes, t2);
                    // System.out.printf("s2: %f\n", s2);
                    // Is the final configuration separated?
                    if (s2 > target + tolerance)
                    {
                        // Victory!
                        // System.out.println("separated");
                        output.State = TOIOutputState.Separated;
                        output.T = tMax;
                        done = true;
                        break;
                    }

                    // Has the separation reached tolerance?
                    if (s2 > target - tolerance)
                    {
                        // System.out.println("advancing");
                        // Advance the sweeps
                        t1 = t2;
                        break;
                    }

                    // Compute the initial separation of the witness points.
                    float s1 = fcn.Evaluate(indexes[0], indexes[1], t1);
                    // Check for initial overlap. This might happen if the root finder
                    // runs out of iterations.
                    // System.out.printf("s1: %f, target: %f, tolerance: %f\n", s1, target,
                    // tolerance);
                    if (s1 < target - tolerance)
                    {
                        // System.out.println("failed?");
                        output.State = TOIOutputState.Failed;
                        output.T = t1;
                        done = true;
                        break;
                    }

                    // Check for touching
                    if (s1 <= target + tolerance)
                    {
                        // System.out.println("touching?");
                        // Victory! t1 should hold the TOI (could be 0.0).
                        output.State = TOIOutputState.Touching;
                        output.T = t1;
                        done = true;
                        break;
                    }

                    // Compute 1D root of: f(x) - target = 0
                    int rootIterCount = 0;
                    float a1 = t1, a2 = t2;
                    for (; ; )
                    {
                        // Use a mix of the secant rule and bisection.
                        float t;
                        if ((rootIterCount & 1) == 1)
                        {
                            // Secant rule to improve convergence.
                            t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
                        }
                        else
                        {
                            // Bisection to guarantee progress.
                            t = 0.5f * (a1 + a2);
                        }

                        float s = fcn.Evaluate(indexes[0], indexes[1], t);

                        if (MathUtils.Abs(s - target) < tolerance)
                        {
                            // t2 holds a tentative value for t1
                            t2 = t;
                            break;
                        }

                        // Ensure we continue to bracket the root.
                        if (s > target)
                        {
                            a1 = t;
                            s1 = s;
                        }
                        else
                        {
                            a2 = t;
                            s2 = s;
                        }

                        ++rootIterCount;
                        ++ToiRootIters;

                        // djm: whats with this? put in settings?
                        if (rootIterCount == 50)
                        {
                            break;
                        }
                    }

                    ToiMaxRootIters = MathUtils.Max(ToiMaxRootIters, rootIterCount);

                    ++pushBackIter;

                    if (pushBackIter == Settings.MAX_POLYGON_VERTICES)
                    {
                        break;
                    }
                }

                ++iter;
                ++ToiIters;

                if (done)
                {
                    // System.out.println("done");
                    break;
                }

                if (iter == MAX_ITERATIONS)
                {
                    // System.out.println("failed, root finder stuck");
                    // Root finder got stuck. Semi-victory.
                    output.State = TOIOutputState.Failed;
                    output.T = t1;
                    break;
                }
            }

            // System.out.printf("final sweeps: %f, %f, %f; %f, %f, %f", input.s)
            ToiMaxIters = MathUtils.Max(ToiMaxIters, iter);
        }
        /// <summary>
        /// Compute the upper bound on time before two shapes penetrate. Time is represented as a fraction
        /// between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
        /// non-tunneling collision. If you change the time interval, you should call this function again.
        /// Note: use Distance to compute the contact point and normal at the time of impact.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="input"></param>
        public void GetTimeOfImpact(TOIOutput output, TOIInput input)
        {
            // CCD via the local separating axis method. This seeks progression
            // by computing the largest time at which separation is maintained.

            ++ToiCalls;

            output.State = TOIOutputState.Unknown;
            output.T     = input.tMax;

            Distance.DistanceProxy proxyA = input.ProxyA;
            Distance.DistanceProxy proxyB = input.ProxyB;

            sweepA.Set(input.SweepA);
            sweepB.Set(input.SweepB);

            // Large rotations can make the root finder fail, so we normalize the
            // sweep angles.
            sweepA.Normalize();
            sweepB.Normalize();

            float tMax = input.tMax;

            float totalRadius = proxyA.Radius + proxyB.Radius;
            // djm: whats with all these constants?
            float       target    = MathUtils.Max(Settings.LINEAR_SLOP, totalRadius - 3.0f * Settings.LINEAR_SLOP);
            const float tolerance = 0.25f * Settings.LINEAR_SLOP;

            Debug.Assert(target > tolerance);

            float t1   = 0f;
            int   iter = 0;

            cache.Count            = 0;
            distanceInput.ProxyA   = input.ProxyA;
            distanceInput.ProxyB   = input.ProxyB;
            distanceInput.UseRadii = false;

            // The outer loop progressively attempts to compute new separating axes.
            // This loop terminates when an axis is repeated (no progress is made).
            for (; ;)
            {
                sweepA.GetTransform(xfA, t1);
                sweepB.GetTransform(xfB, t1);
                // System.out.printf("sweepA: %f, %f, sweepB: %f, %f\n",
                // sweepA.c.x, sweepA.c.y, sweepB.c.x, sweepB.c.y);
                // Get the distance between shapes. We can also use the results
                // to get a separating axis
                distanceInput.TransformA = xfA;
                distanceInput.TransformB = xfB;
                pool.GetDistance().GetDistance(distanceOutput, cache, distanceInput);

                // System.out.printf("Dist: %f at points %f, %f and %f, %f.  %d iterations\n",
                // distanceOutput.distance, distanceOutput.pointA.x, distanceOutput.pointA.y,
                // distanceOutput.pointB.x, distanceOutput.pointB.y,
                // distanceOutput.iterations);

                // If the shapes are overlapped, we give up on continuous collision.
                if (distanceOutput.Distance <= 0f)
                {
                    // System.out.println("failure, overlapped");
                    // Failure!
                    output.State = TOIOutputState.Overlapped;
                    output.T     = 0f;
                    break;
                }

                if (distanceOutput.Distance < target + tolerance)
                {
                    // System.out.println("touching, victory");
                    // Victory!
                    output.State = TOIOutputState.Touching;
                    output.T     = t1;
                    break;
                }

                // Initialize the separating axis.
                fcn.Initialize(cache, proxyA, sweepA, proxyB, sweepB, t1);

                // Compute the TOI on the separating axis. We do this by successively
                // resolving the deepest point. This loop is bounded by the number of
                // vertices.
                bool  done         = false;
                float t2           = tMax;
                int   pushBackIter = 0;
                for (; ;)
                {
                    // Find the deepest point at t2. Store the witness point indices.
                    float s2 = fcn.FindMinSeparation(indexes, t2);
                    // System.out.printf("s2: %f\n", s2);
                    // Is the final configuration separated?
                    if (s2 > target + tolerance)
                    {
                        // Victory!
                        // System.out.println("separated");
                        output.State = TOIOutputState.Separated;
                        output.T     = tMax;
                        done         = true;
                        break;
                    }

                    // Has the separation reached tolerance?
                    if (s2 > target - tolerance)
                    {
                        // System.out.println("advancing");
                        // Advance the sweeps
                        t1 = t2;
                        break;
                    }

                    // Compute the initial separation of the witness points.
                    float s1 = fcn.Evaluate(indexes[0], indexes[1], t1);
                    // Check for initial overlap. This might happen if the root finder
                    // runs out of iterations.
                    // System.out.printf("s1: %f, target: %f, tolerance: %f\n", s1, target,
                    // tolerance);
                    if (s1 < target - tolerance)
                    {
                        // System.out.println("failed?");
                        output.State = TOIOutputState.Failed;
                        output.T     = t1;
                        done         = true;
                        break;
                    }

                    // Check for touching
                    if (s1 <= target + tolerance)
                    {
                        // System.out.println("touching?");
                        // Victory! t1 should hold the TOI (could be 0.0).
                        output.State = TOIOutputState.Touching;
                        output.T     = t1;
                        done         = true;
                        break;
                    }

                    // Compute 1D root of: f(x) - target = 0
                    int   rootIterCount = 0;
                    float a1 = t1, a2 = t2;
                    for (; ;)
                    {
                        // Use a mix of the secant rule and bisection.
                        float t;
                        if ((rootIterCount & 1) == 1)
                        {
                            // Secant rule to improve convergence.
                            t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
                        }
                        else
                        {
                            // Bisection to guarantee progress.
                            t = 0.5f * (a1 + a2);
                        }

                        float s = fcn.Evaluate(indexes[0], indexes[1], t);

                        if (MathUtils.Abs(s - target) < tolerance)
                        {
                            // t2 holds a tentative value for t1
                            t2 = t;
                            break;
                        }

                        // Ensure we continue to bracket the root.
                        if (s > target)
                        {
                            a1 = t;
                            s1 = s;
                        }
                        else
                        {
                            a2 = t;
                            s2 = s;
                        }

                        ++rootIterCount;
                        ++ToiRootIters;

                        // djm: whats with this? put in settings?
                        if (rootIterCount == 50)
                        {
                            break;
                        }
                    }

                    ToiMaxRootIters = MathUtils.Max(ToiMaxRootIters, rootIterCount);

                    ++pushBackIter;

                    if (pushBackIter == Settings.MAX_POLYGON_VERTICES)
                    {
                        break;
                    }
                }

                ++iter;
                ++ToiIters;

                if (done)
                {
                    // System.out.println("done");
                    break;
                }

                if (iter == MAX_ITERATIONS)
                {
                    // System.out.println("failed, root finder stuck");
                    // Root finder got stuck. Semi-victory.
                    output.State = TOIOutputState.Failed;
                    output.T     = t1;
                    break;
                }
            }

            // System.out.printf("final sweeps: %f, %f, %f; %f, %f, %f", input.s)
            ToiMaxIters = MathUtils.Max(ToiMaxIters, iter);
        }