public void ValidateDensityLn(
            [Values(2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5)] double alpha,
            [Values(-1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)] double beta,
            [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)] double scale,
            [Values(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)] double location,
            [Values(1.5, 3.0, 5.0, 1.5, 3.0, 5.0, 1.5, 3.0, 5.0)] double x,
            [Values(-1.8280121234846454, -3.5155121234846449, -7.5155121234846449, -2.3233848821910463, -3.4473149788434458, -4.4028264238708825, -1.8604695287002526, -2.7335236328735038, -3.4330954018558235)] double dln)
        {
            var n = new Stable(alpha, beta, scale, location);

            AssertHelpers.AlmostEqual(dln, n.DensityLn(x), 15);
        }
Exemple #2
0
        public void ValidateDensityLn(double alpha, double beta, double scale, double location, double x, double dln)
        {
            var n = new Stable(alpha, beta, scale, location);

            AssertHelpers.AlmostEqual(dln, n.DensityLn(x), 15);
        }
Exemple #3
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Stable_distribution">Stable distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Stable distribution class with parameters Alpha = 2.0, Beta = 0, Scale = 1, Location = 0.
            var stable = new Stable(2.0, 0, 1, 0);

            Console.WriteLine(@"1. Initialize the new instance of the Stable distribution class with parameters Alpha = {0}, Beta = {1}, Scale = {2}, Location = {3}", stable.Alpha, stable.Beta, stable.Scale, stable.Location);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", stable);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", stable.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", stable.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", stable.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", stable.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", stable.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", stable.Mean.ToString(" #0.00000;-#0.00000"));

            // Median
            Console.WriteLine(@"{0} - Median", stable.Median.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", stable.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", stable.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", stable.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", stable.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples of the Stable distribution
            Console.WriteLine(@"3. Generate 10 samples of the Stable distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(stable.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Stable(1) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Stable(2, 0, 1, 0) distribution and display histogram");
            var data = new double[100000];

            Stable.Samples(data, 2, 0, 1, 0);
            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Stable(1, 0, 1, 0) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Stable(1, 0, 1, 0) distribution and display histogram");
            Stable.Samples(data, 1, 0, 1, 0);
            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 6. Generate 100000 samples of the Stable(1.5, 1, 1, 5) distribution and display histogram
            Console.WriteLine(@"6. Generate 100000 samples of the Stable(1.5, 1, 1, 5) distribution and display histogram");
            Stable.Samples(data, 1.5, 1, 1, 5);
            ConsoleHelper.DisplayHistogram(data);
        }
 public void ValidateDensityLn(double alpha, double beta, double scale, double location, double x, double dln)
 {
     var n = new Stable(alpha, beta, scale, location);
     AssertHelpers.AlmostEqual(dln, n.DensityLn(x), 15);
 }
 public void ValidateDensityLn(
     [Values(2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5)] double alpha, 
     [Values(-1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)] double beta, 
     [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)] double scale, 
     [Values(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)] double location, 
     [Values(1.5, 3.0, 5.0, 1.5, 3.0, 5.0, 1.5, 3.0, 5.0)] double x, 
     [Values(-1.8280121234846454, -3.5155121234846449, -7.5155121234846449, -2.3233848821910463, -3.4473149788434458, -4.4028264238708825, -1.8604695287002526, -2.7335236328735038, -3.4330954018558235)] double dln)
 {
     var n = new Stable(alpha, beta, scale, location);
     AssertHelpers.AlmostEqual(dln, n.DensityLn(x), 15);
 }