public void zero_inliers_test() { // Fix the random number generator Accord.Math.Random.Generator.Seed = 0; double[,] data = // This is the same data used in the RANSAC sample app { { 1.0, 0.79 }, { 3, 2.18 }, { 5, 5.99 }, { 7.0, 7.65 }, { 9.0, 9.55 }, { 11, 11.89 }, { 13, 13.73 }, { 15.0, 14.77 }, { 17.0, 18.00 }, { 1.2, 1.45 }, { 1.5, 1.18 }, { 1.8, 1.92 }, { 2.1, 1.47 }, { 2.4, 2.41 }, { 2.7, 2.35 }, { 3.0, 3.41 }, { 3.3, 3.78 }, { 3.6, 3.21 }, { 3.9, 4.76 }, { 4.2, 5.03 }, { 4.5, 4.19 }, { 4.8, 3.81 }, { 5.1, 6.07 }, { 5.4, 5.74 }, { 5.7, 6.39 }, { 6, 6.11 }, { 6.3, 6.86 }, { 6.6, 6.35 }, { 6.9, 7.9 }, { 7.2, 8.04 }, { 7.5, 8.48 }, { 7.8, 8.07 }, { 8.1, 8.22 }, { 8.4, 8.41 }, { 8.7, 9.4 }, { 9, 8.8 }, { 9.3, 8.44 }, { 9.6, 9.32 }, { 9.9, 9.18 }, { 10.2, 9.86 }, { 10.5, 10.16 }, { 10.8, 10.28 }, { 11.1, 11.07 }, { 11.4, 11.66 }, { 11.7, 11.13 }, { 12, 11.55 }, { 12.3, 12.62 }, { 12.6, 12.27 }, { 12.9, 12.33 }, { 13.2, 12.37 }, { 13.5, 12.75 }, { 13.8, 14.44 }, { 14.1, 14.71 }, { 14.4, 13.72 }, { 14.7, 14.54 }, { 15, 14.67 }, { 15.3, 16.04 }, { 15.6, 15.21 }, { 1, 3.9 }, { 2, 11.5 }, { 3.0, 13.0 }, { 4, 0.9 }, { 5, 5.5 }, { 6, 16.2 }, { 7.0, 0.8 }, { 8, 9.4 }, { 9, 9.5 }, { 10, 17.5 }, { 11.0, 6.3 }, { 12, 12.6 }, { 13, 1.5 }, { 14, 1.5 }, { 2.0, 10 }, { 3, 9 }, { 15, 2 }, { 15.5, 1.2 }, }; // First, fit simple linear regression directly for comparison reasons. double[] x = data.GetColumn(0); // Extract the independent variable double[] y = data.GetColumn(1); // Extract the dependent variable // Create a simple linear regression var regression = new SimpleLinearRegression(); Assert.AreEqual(1, regression.NumberOfInputs); Assert.AreEqual(1, regression.NumberOfOutputs); // Estimate a line passing through the (x, y) points double sumOfSquaredErrors = regression.Regress(x, y); // Now, compute the values predicted by the // regression for the original input points double[] commonOutput = regression.Compute(x); // Now, fit simple linear regression using RANSAC int maxTrials = 1000; int minSamples = 20; double probability = 0.950; double errorThreshold = 1000; int count = 0; // Create a RANSAC algorithm to fit a simple linear regression var ransac = new RANSAC <SimpleLinearRegression>(minSamples) { Probability = probability, Threshold = errorThreshold, MaxEvaluations = maxTrials, // Define a fitting function Fitting = delegate(int[] sample) { // Retrieve the training data double[] inputs = x.Submatrix(sample); double[] outputs = y.Submatrix(sample); // Build a Simple Linear Regression model var r = new SimpleLinearRegression(); r.Regress(inputs, outputs); return(r); }, // Define a check for degenerate samples Degenerate = delegate(int[] sample) { // In this case, we will not be performing such checks. return(false); }, // Define a inlier detector function Distances = delegate(SimpleLinearRegression r, double threshold) { count++; List <int> inliers = new List <int>(); // Generate 0 inliers twice, then proceed as normal if (count > 2) { for (int i = 0; i < x.Length; i++) { // Compute error for each point double error = r.Compute(x[i]) - y[i]; // If the squared error is below the given threshold, // the point is considered to be an inlier. if (error * error < threshold) { inliers.Add(i); } } } return(inliers.ToArray()); } }; // Now that the RANSAC hyperparameters have been specified, we can // compute another regression model using the RANSAC algorithm: int[] inlierIndices; SimpleLinearRegression robustRegression = ransac.Compute(data.Rows(), out inlierIndices); // Compute the output of the model fitted by RANSAC double[] ransacOutput = robustRegression.Compute(x); Assert.AreEqual(ransac.TrialsNeeded, 0); Assert.AreEqual(ransac.TrialsPerformed, 3); string a = inlierIndices.ToCSharp(); string b = ransacOutput.ToCSharp(); int[] expectedInliers = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }; double[] expectedOutput = new double[] { 4.62124895918799, 5.37525473445784, 6.12926050972769, 6.88326628499754, 7.63727206026739, 8.39127783553724, 9.14528361080709, 9.89928938607694, 10.6532951613468, 4.69664953671498, 4.80975040300545, 4.92285126929593, 5.03595213558641, 5.14905300187689, 5.26215386816736, 5.37525473445784, 5.48835560074832, 5.6014564670388, 5.71455733332927, 5.82765819961975, 5.94075906591023, 6.05385993220071, 6.16696079849118, 6.28006166478166, 6.39316253107214, 6.50626339736262, 6.61936426365309, 6.73246512994357, 6.84556599623405, 6.95866686252453, 7.071767728815, 7.18486859510548, 7.29796946139596, 7.41107032768644, 7.52417119397691, 7.63727206026739, 7.75037292655787, 7.86347379284835, 7.97657465913882, 8.0896755254293, 8.20277639171978, 8.31587725801026, 8.42897812430073, 8.54207899059121, 8.65517985688169, 8.76828072317216, 8.88138158946264, 8.99448245575312, 9.1075833220436, 9.22068418833408, 9.33378505462455, 9.44688592091503, 9.55998678720551, 9.67308765349599, 9.78618851978646, 9.89928938607694, 10.0123902523674, 10.1254911186579, 4.62124895918799, 4.99825184682292, 5.37525473445784, 5.75225762209277, 6.12926050972769, 6.50626339736262, 6.88326628499754, 7.26026917263247, 7.63727206026739, 8.01427494790232, 8.39127783553724, 8.76828072317216, 9.14528361080709, 9.52228649844202, 4.99825184682292, 5.37525473445784, 9.89928938607694, 10.0877908298944 }; Assert.IsTrue(inlierIndices.IsEqual(expectedInliers)); Assert.IsTrue(ransacOutput.IsEqual(expectedOutput, 1e-10)); }
public void LogarithmRegressionRegressTest() { // This is the same data from the example available at // http://mathbits.com/MathBits/TISection/Statistics2/logarithmic.htm // Declare your inputs and output data double[] inputs = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; double[] outputs = { 6, 9.5, 13, 15, 16.5, 17.5, 18.5, 19, 19.5, 19.7, 19.8 }; // Transform inputs to logarithms double[] logx = Matrix.Log(inputs); // Compute a simple linear regression var lr = new SimpleLinearRegression(); // Compute with the log-transformed data double error = lr.Regress(logx, outputs); // Get an expression representing the learned regression model // We just have to remember that 'x' will actually mean 'log(x)' string result = lr.ToString("N4", CultureInfo.InvariantCulture); // Result will be "y(x) = 6.1082x + 6.0993" Assert.AreEqual(2.8760006026675797, error); Assert.AreEqual(6.1081800414945704, lr.Slope); Assert.AreEqual(6.0993411396126653, lr.Intercept); Assert.AreEqual("y(x) = 6.1082x + 6.0993", result); }
public void ToStringTest() { // Issue 51: SimpleLinearRegression regression = new SimpleLinearRegression(); var x = new double[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; var y = new double[] { 1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321 }; regression.Regress(x, y); { string expected = "y(x) = 32x + -44"; expected = expected.Replace(".", System.Globalization.CultureInfo.CurrentCulture.NumberFormat.NumberDecimalSeparator); string actual = regression.ToString(); Assert.AreEqual(expected, actual); } { string expected = "y(x) = 32x + -44"; string actual = regression.ToString(null, System.Globalization.CultureInfo.GetCultureInfo("en-US")); Assert.AreEqual(expected, actual); } { string expected = "y(x) = 32.0x + -44.0"; string actual = regression.ToString("N1", System.Globalization.CultureInfo.GetCultureInfo("en-US")); Assert.AreEqual(expected, actual); } { string expected = "y(x) = 32,00x + -44,00"; string actual = regression.ToString("N2", System.Globalization.CultureInfo.GetCultureInfo("pt-BR")); Assert.AreEqual(expected, actual); } }
public void RegressTest() { // Let's say we have some univariate, continuous sets of input data, // and a corresponding univariate, continuous set of output data, such // as a set of points in R². A simple linear regression is able to fit // a line relating the input variables to the output variables in which // the minimum-squared-error of the line and the actual output points // is minimum. // Declare some sample test data. double[] inputs = { 80, 60, 10, 20, 30 }; double[] outputs = { 20, 40, 30, 50, 60 }; // Create a new simple linear regression SimpleLinearRegression regression = new SimpleLinearRegression(); // Compute the linear regression regression.Regress(inputs, outputs); // Compute the output for a given input. The double y = regression.Compute(85); // The answer will be 28.088 // We can also extract the slope and the intercept term // for the line. Those will be -0.26 and 50.5, respectively. double s = regression.Slope; double c = regression.Intercept; // Expected slope and intercept double eSlope = -0.264706; double eIntercept = 50.588235; Assert.AreEqual(28.0882352941192, y); Assert.AreEqual(eSlope, s, 0.0001); Assert.AreEqual(eIntercept, c, 0.0001); }
static void Main(string[] args) { DataTable tableAttHp = new ExcelReader("HsAttHp.xlsx").GetWorksheet("Sheet1"); double[][] tableAttHpMatrix = tableAttHp.ToArray <double>(); DataTable tableCost = new ExcelReader("HsCost.xlsx").GetWorksheet("Sheet1"); double[] tableCostMatrix = tableCost.Columns[0].ToArray <double>(); //double[,] scores = Accord.Statistics.Tools.ZScores(tableAttHpMatrix); //double[,] centered = Accord.Statistics.Tools.Center(tableAttHpMatrix); //double[,] standard = Accord.Statistics.Tools.Standardize(tableAttHpMatrix); //foreach (double i in scores ) { Console.WriteLine(i); } //Console.ReadKey(); //foreach (double i in centered) { Console.WriteLine(i); } //Console.ReadKey(); //foreach (double i in standard) { Console.WriteLine(i); } // Plot the data //ScatterplotBox.Show("Hs", tableAttHpMatrix, tableCostMatrix).Hold(); var target = new MultipleLinearRegression(2, true); double error = target.Regress(tableAttHpMatrix, tableCostMatrix); double a = target.Coefficients[0]; // a = 0 double b = target.Coefficients[1]; // b = 0 double c = target.Coefficients[2]; // c = 1 Console.WriteLine(a + " " + b + " " + c); Console.ReadKey(); double[] inputs = { 2005, 2006, 2007, 2008, 2009, 2010, 2011 }; double[] outputs = { 12, 19, 29, 37, 45, 23, 33 }; // Create a new simple linear regression SimpleLinearRegression regression = new SimpleLinearRegression(); // Compute the linear regression regression.Regress(inputs, outputs); // Compute the output for a given input. The double y = regression.Compute(85); // The answer will be 28.088 // We can also extract the slope and the intercept term // for the line. Those will be -0.26 and 50.5, respectively. double s = regression.Slope; double cut = regression.Intercept; Console.WriteLine(s + "x+" + cut); Console.ReadKey(); }
static void Main(string[] args) { var advertisingData = Extract(Path.Combine(Directory.GetCurrentDirectory(), "DataSets", "Advertising.csv")); var simpleLinearRegression = new SimpleLinearRegression(); var result = simpleLinearRegression.Regress("TV", "sales", advertisingData); Console.WriteLine("Press a key to quit the application"); Console.ReadKey(); }
private void btnOK_Click(object sender, EventArgs e) { //将Input放在X轴,OutPut放在Y轴 var GraphPane = zedGraph.GraphPane; GraphPane.CurveList.Clear(); GraphPane.XAxis.Title.Text = cmbInputField.Text; GraphPane.YAxis.Title.Text = cmbOutputField.Text; //获得Input,Output列表 double[] inliersX = new double[mongoCol.Count()]; double[] inliersY = new double[mongoCol.Count()]; int Cnt = 0; foreach (var item in mongoCol.FindAllAs <BsonDocument>()) { inliersX[Cnt] = item[cmbInputField.Text].AsInt32; inliersY[Cnt] = item[cmbOutputField.Text].AsInt32; Cnt++; } var myCurve = GraphPane.AddCurve("Point", new PointPairList(inliersX, inliersY), Color.Blue, SymbolType.Default); myCurve.Line.IsVisible = false; myCurve.Symbol.Fill = new Fill(Color.Blue); //线性回归 // Create a new simple linear regression SimpleLinearRegression regression = new SimpleLinearRegression(); // Compute the linear regression regression.Regress(inliersX, inliersY); double[] InputX = new double[2]; double[] OutputY = new double[2]; InputX[0] = 0; InputX[1] = inliersX.Max(); OutputY[0] = regression.Compute(0); OutputY[1] = regression.Compute(inliersX.Max()); myCurve = GraphPane.AddCurve("Regression:" + regression.ToString(), new PointPairList(InputX, OutputY), Color.Blue, SymbolType.Default); myCurve.Line.IsVisible = true; myCurve.Line.Color = Color.Red; //更新坐标轴和图表 zedGraph.AxisChange(); zedGraph.Invalidate(); }
public TestLinearRegression() { double[] inputs = { 80, 60, 10, 20, 30 }; double[] outputs = { 20, 40, 30, 50, 60 }; var regression = new SimpleLinearRegression(); regression.Regress(inputs, outputs); var slope = regression.Slope; var mySlope = CalculateSlope(inputs, outputs); if (slope == mySlope) { //You ARE GENIOUS } // }
public void When_Calculate_Linear_Regression() { var inputs = new double[] { 230.1, 44.5, 17.2, 151.5, 180.8, 8.7, 57.5, 120.2, 8.6, 199.8, 66.1, 214.7, 23.8, 97.5, 204.1, 195.4, 67.8, 281.4, 69.2, 147.3, 218.4, 237.4, 13.2, 228.3, 62.3, 262.9, 142.9, 240.1, 248.8, 70.6, 292.9, 112.9, 97.2, 265.6, 95.7, 290.7, 266.9, 74.7, 43.1, 228, 202.5, 177, 293.6, 206.9, 25.1, 175.1, 89.7, 239.9, 227.2, 66.9, 199.8, 100.4, 216.4, 182.6, 262.7, 198.9, 7.3, 136.2, 210.8, 210.7, 53.5, 261.3, 239.3, 102.7, 131.1, 69, 31.5, 139.3, 237.4, 216.8, 199.1, 109.8, 26.8, 129.4, 213.4, 16.9, 27.5, 120.5, 5.4, 116, 76.4, 239.8, 75.3, 68.4, 213.5, 193.2, 76.3, 110.7, 88.3, 109.8, 134.3, 28.6, 217.7, 250.9, 107.4, 163.3, 197.6, 184.9, 289.7, 135.2, 222.4, 296.4, 280.2, 187.9, 238.2, 137.9, 25, 90.4, 13.1, 255.4, 225.8, 241.7, 175.7, 209.6, 78.2, 75.1, 139.2, 76.4, 125.7, 19.4, 141.3, 18.8, 224, 123.1, 229.5, 87.2, 7.8, 80.2, 220.3, 59.6, 0.7, 265.2, 8.4, 219.8, 36.9, 48.3, 25.6, 273.7, 43, 184.9, 73.4, 193.7, 220.5, 104.6, 96.2, 140.3, 240.1, 243.2, 38, 44.7, 280.7, 121, 197.6, 171.3, 187.8, 4.1, 93.9, 149.8, 11.7, 131.7, 172.5, 85.7, 188.4, 163.5, 117.2, 234.5, 17.9, 206.8, 215.4, 284.3, 50, 164.5, 19.6, 168.4, 222.4, 276.9, 248.4, 170.2, 276.7, 165.6, 156.6, 218.5, 56.2, 287.6, 253.8, 205, 139.5, 191.1, 286, 18.7, 39.5, 75.5, 17.2, 166.8, 149.7, 38.2, 94.2, 177, 283.6, 232.1 }; var outputs = new double[] { 22.1, 10.4, 9.3, 18.5, 12.9, 7.2, 11.8, 13.2, 4.8, 10.6, 8.6, 17.4, 9.2, 9.7, 19, 22.4, 12.5, 24.4, 11.3, 14.6, 18, 12.5, 5.6, 15.5, 9.7, 12, 15, 15.9, 18.9, 10.5, 21.4, 11.9, 9.6, 17.4, 9.5, 12.8, 25.4, 14.7, 10.1, 21.5, 16.6, 17.1, 20.7, 12.9, 8.5, 14.9, 10.6, 23.2, 14.8, 9.7, 11.4, 10.7, 22.6, 21.2, 20.2, 23.7, 5.5, 13.2, 23.8, 18.4, 8.1, 24.2, 15.7, 14, 18, 9.3, 9.5, 13.4, 18.9, 22.3, 18.3, 12.4, 8.8, 11, 17, 8.7, 6.9, 14.2, 5.3, 11, 11.8, 12.3, 11.3, 13.6, 21.7, 15.2, 12, 16, 12.9, 16.7, 11.2, 7.3, 19.4, 22.2, 11.5, 16.9, 11.7, 15.5, 25.4, 17.2, 11.7, 23.8, 14.8, 14.7, 20.7, 19.2, 7.2, 8.7, 5.3, 19.8, 13.4, 21.8, 14.1, 15.9, 14.6, 12.6, 12.2, 9.4, 15.9, 6.6, 15.5, 7, 11.6, 15.2, 19.7, 10.6, 6.6, 8.8, 24.7, 9.7, 1.6, 12.7, 5.7, 19.6, 10.8, 11.6, 9.5, 20.8, 9.6, 20.7, 10.9, 19.2, 20.1, 10.4, 11.4, 10.3, 13.2, 25.4, 10.9, 10.1, 16.1, 11.6, 16.6, 19, 15.6, 3.2, 15.3, 10.1, 7.3, 12.9, 14.4, 13.3, 14.9, 18, 11.9, 11.9, 8, 12.2, 17.1, 15, 8.4, 14.5, 7.6, 11.7, 11.5, 27, 20.2, 11.7, 11.8, 12.6, 10.5, 12.2, 8.7, 26.2, 17.6, 22.6, 10.3, 17.3, 15.9, 6.7, 10.8, 9.9, 5.9, 19.6, 17.3, 7.6, 9.7, 12.8, 25.5, 13.4 }; var linearRegression = new SimpleLinearRegression(MatrixDecompositionAlgs.GOLUB_REINSCH); var result = linearRegression.Regress(inputs, outputs); Assert.Equal(0.0475, System.Math.Round(result.LinearRegression.SlopeLst.First().Value, 4)); Assert.Equal(7.0326, System.Math.Round(result.LinearRegression.Intercept.Value, 4)); Assert.Equal(0, System.Math.Round(result.LinearRegression.SlopeLst.First().PValue)); Assert.Equal(17.668, System.Math.Round(result.LinearRegression.SlopeLst.First().TStatistic, 3)); Assert.Equal(0, System.Math.Round(result.LinearRegression.Intercept.PValue)); Assert.Equal(15.36, System.Math.Round(result.LinearRegression.Intercept.TStatistic, 2)); }
public static object TestRegression(double[] x, double[] y) { SimpleLinearRegression slr = new SimpleLinearRegression(); double err = slr.Regress(x, y); double[] values = slr.Compute(x); object[,] ret = new object[values.Length + 3, 2]; ret[0, 0] = "R^2"; ret[0, 1] = slr.CoefficientOfDetermination(x, y); ret[1, 0] = "Slope"; ret[1, 1] = slr.Slope; ret[2, 0] = "Error"; ret[2, 1] = err; for (int i = 0; i < values.Length; ++i) { ret[i + 3, 0] = x[i]; ret[i + 3, 1] = values[i]; } return(ret); }
private void btnCompute_Click(object sender, EventArgs e) { DataTable dataTable = dgvAnalysisSource.DataSource as DataTable; if (dataTable == null) { return; } // Gather the available data double[][] data = dataTable.ToArray(); // First, fit simple linear regression directly for comparison reasons. double[] x = data.GetColumn(0); // Extract the independent variable double[] y = data.GetColumn(1); // Extract the dependent variable // Create a simple linear regression var regression = new SimpleLinearRegression(); // Estimate a line passing through the (x, y) points double sumOfSquaredErrors = regression.Regress(x, y); // Now, compute the values predicted by the // regression for the original input points double[] commonOutput = regression.Compute(x); // Now, fit simple linear regression using RANSAC int maxTrials = (int)numMaxTrials.Value; int minSamples = (int)numSamples.Value; double probability = (double)numProbability.Value; double errorThreshold = (double)numThreshold.Value; // Create a RANSAC algorithm to fit a simple linear regression var ransac = new RANSAC <SimpleLinearRegression>(minSamples) { Probability = probability, Threshold = errorThreshold, MaxEvaluations = maxTrials, // Define a fitting function Fitting = delegate(int[] sample) { // Retrieve the training data double[] inputs = x.Submatrix(sample); double[] outputs = y.Submatrix(sample); // Build a Simple Linear Regression model var r = new SimpleLinearRegression(); r.Regress(inputs, outputs); return(r); }, // Define a check for degenerate samples Degenerate = delegate(int[] sample) { // In this case, we will not be performing such checks. return(false); }, // Define a inlier detector function Distances = delegate(SimpleLinearRegression r, double threshold) { List <int> inliers = new List <int>(); for (int i = 0; i < x.Length; i++) { // Compute error for each point double error = r.Compute(x[i]) - y[i]; // If the squared error is below the given threshold, // the point is considered to be an inlier. if (error * error < threshold) { inliers.Add(i); } } return(inliers.ToArray()); } }; // Now that the RANSAC hyperparameters have been specified, we can // compute another regression model using the RANSAC algorithm: int[] inlierIndices; SimpleLinearRegression robustRegression = ransac.Compute(data.Length, out inlierIndices); if (robustRegression == null) { lbStatus.Text = "RANSAC failed. Please try again after adjusting its parameters."; return; // the RANSAC algorithm did not find any inliers and no model was created } // Compute the output of the model fitted by RANSAC double[] ransacOutput = robustRegression.Compute(x); // Create scatter plot comparing the outputs from the standard // linear regression and the RANSAC-fitted linear regression. CreateScatterplot(graphInput, x, y, commonOutput, ransacOutput, x.Submatrix(inlierIndices), y.Submatrix(inlierIndices)); lbStatus.Text = "Regression created! Please compare the RANSAC " + "regression (blue) with the simple regression (in red)."; }
public override void Train(double[] predictors, double[] results) { regression = new SimpleLinearRegression(); regression.Regress(predictors, results); }
private void btnSampleRunAnalysis_Click(object sender, EventArgs e) { DataTable dataTable = dgvAnalysisSource.DataSource as DataTable; if (dataTable == null) { return; } // Gather the available data double[][] data = dataTable.ToArray(); // First, fit simple linear regression directly for comparison reasons. double[] x = data.GetColumn(0); // Extract the independent variable double[] y = data.GetColumn(1); // Extract the dependent variable // Create a simple linear regression SimpleLinearRegression slr = new SimpleLinearRegression(); slr.Regress(x, y); // Compute the simple linear regression output double[] slrY = slr.Compute(x); // Now, fit simple linear regression using RANSAC int maxTrials = (int)numMaxTrials.Value; int minSamples = (int)numSamples.Value; double probability = (double)numProbability.Value; double errorThreshold = (double)numThreshold.Value; // Create a RANSAC algorithm to fit a simple linear regression var ransac = new RANSAC <SimpleLinearRegression>(minSamples); ransac.Probability = probability; ransac.Threshold = errorThreshold; ransac.MaxEvaluations = maxTrials; // Set the RANSAC functions to evaluate and test the model ransac.Fitting = // Define a fitting function delegate(int[] sample) { // Retrieve the training data double[] inputs = x.Submatrix(sample); double[] outputs = y.Submatrix(sample); // Build a Simple Linear Regression model var r = new SimpleLinearRegression(); r.Regress(inputs, outputs); return(r); }; ransac.Degenerate = // Define a check for degenerate samples delegate(int[] sample) { // In this case, we will not be performing such checks. return(false); }; ransac.Distances = // Define a inlier detector function delegate(SimpleLinearRegression r, double threshold) { List <int> inliers = new List <int>(); for (int i = 0; i < x.Length; i++) { // Compute error for each point double error = r.Compute(x[i]) - y[i]; // If the squared error is below the given threshold, // the point is considered to be an inlier. if (error * error < threshold) { inliers.Add(i); } } return(inliers.ToArray()); }; // Finally, try to fit the regression model using RANSAC int[] idx; SimpleLinearRegression rlr = ransac.Compute(data.Length, out idx); // Check if RANSAC was able to build a consistent model if (rlr == null) { return; // RANSAC was unsucessful, just return. } else { // Compute the output of the model fitted by RANSAC double[] rlrY = rlr.Compute(x); // Create scatterplot comparing the outputs from the standard // linear regression and the RANSAC-fitted linear regression. CreateScatterplot(graphInput, x, y, slrY, rlrY, x.Submatrix(idx), y.Submatrix(idx)); } }