SgdCalibrated( this SweepableBinaryClassificationTrainers trainer, string labelColumnName = "Label", string featureColumnName = "Features", SweepableOption <SgdCalibratedTrainer.Options> optionBuilder = null, SgdCalibratedTrainer.Options defaultOption = null) { var context = trainer.Context; if (optionBuilder == null) { optionBuilder = SgdCalibratedBinaryTrainerSweepableOptions.Default; } optionBuilder.SetDefaultOption(defaultOption); return(context.AutoML().CreateSweepableEstimator( (context, option) => { option.LabelColumnName = labelColumnName; option.FeatureColumnName = featureColumnName; return context.BinaryClassification.Trainers.SgdCalibrated(option); }, optionBuilder, new string[] { labelColumnName, featureColumnName }, new string[] { PredictedLabel }, nameof(SgdCalibratedTrainer))); }
/// <summary> /// Predict a target using logistic regression trained with the <see cref="SgdCalibratedTrainer"/> trainer. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The name of the label column.</param> /// <param name="features">The name of the feature column.</param> /// <param name="weights">The name for the example weight column.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) StochasticGradientDescentClassificationTrainer( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights, SgdCalibratedTrainer.Options options, Action <CalibratedModelParametersBase <LinearBinaryModelParameters, PlattCalibrator> > onFit = null) { var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { options.FeatureColumnName = featuresName; options.LabelColumnName = labelName; options.ExampleWeightColumnName = weightsName; var trainer = new SgdCalibratedTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Output); }
// In this examples we will use the adult income dataset. The goal is to predict // if a person's income is above $50K or not, based on demographic information about that person. // For more details about this dataset, please see https://archive.ics.uci.edu/ml/datasets/adult. public static void Example() { // Create a new context for ML.NET operations. It can be used for exception tracking and logging, // as a catalog of available operations and as the source of randomness. // Setting the seed to a fixed number in this example to make outputs deterministic. var mlContext = new MLContext(seed: 0); // Download and featurize the dataset. var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext); // Leave out 10% of data for testing. var trainTestData = mlContext.Data.TrainTestSplit(data, testFraction: 0.1); // Define the trainer options. var options = new SgdCalibratedTrainer.Options() { // Make the convergence tolerance tighter. ConvergenceTolerance = 5e-5, // Increase the maximum number of passes over training data. NumberOfIterations = 30, // Give the instances of the positive class slightly more weight. PositiveInstanceWeight = 1.2f, }; // Create data training pipeline. var pipeline = mlContext.BinaryClassification.Trainers.SgdCalibrated(options); // Fit this pipeline to the training data. var model = pipeline.Fit(trainTestData.TrainSet); // Evaluate how the model is doing on the test data. var dataWithPredictions = model.Transform(trainTestData.TestSet); var metrics = mlContext.BinaryClassification.Evaluate(dataWithPredictions); SamplesUtils.ConsoleUtils.PrintMetrics(metrics); // Expected output: // Accuracy: 0.85 // AUC: 0.90 // F1 Score: 0.67 // Negative Precision: 0.91 // Negative Recall: 0.89 // Positive Precision: 0.65 // Positive Recall: 0.70 // LogLoss: 0.48 // LogLossReduction: 37.52 // Entropy: 0.78 }
public static void Example() { // Create a new context for ML.NET operations. It can be used for // exception tracking and logging, as a catalog of available operations // and as the source of randomness. Setting the seed to a fixed number // in this example to make outputs deterministic. var mlContext = new MLContext(seed: 0); // Create a list of training data points. var dataPoints = GenerateRandomDataPoints(1000); // Convert the list of data points to an IDataView object, which is // consumable by ML.NET API. var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints); // Define trainer options. var options = new SgdCalibratedTrainer.Options() { // Make the convergence tolerance tighter. ConvergenceTolerance = 5e-5, // Increase the maximum number of passes over training data. NumberOfIterations = 30, // Give the instances of the positive class slightly more weight. PositiveInstanceWeight = 1.2f, }; // Define the trainer. var pipeline = mlContext.BinaryClassification.Trainers .SgdCalibrated(options); // Train the model. var model = pipeline.Fit(trainingData); // Create testing data. Use different random seed to make it different // from training data. var testData = mlContext.Data .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123)); // Run the model on test data set. var transformedTestData = model.Transform(testData); // Convert IDataView object to a list. var predictions = mlContext.Data .CreateEnumerable <Prediction>(transformedTestData, reuseRowObject: false).ToList(); // Print 5 predictions. foreach (var p in predictions.Take(5)) { Console.WriteLine($"Label: {p.Label}, " + $"Prediction: {p.PredictedLabel}"); } // Expected output: // Label: True, Prediction: False // Label: False, Prediction: False // Label: True, Prediction: True // Label: True, Prediction: True // Label: False, Prediction: False // Evaluate the overall metrics. var metrics = mlContext.BinaryClassification .Evaluate(transformedTestData); PrintMetrics(metrics); // Expected output: // Accuracy: 0.60 // AUC: 0.65 // F1 Score: 0.50 // Negative Precision: 0.59 // Negative Recall: 0.74 // Positive Precision: 0.61 // Positive Recall: 0.43 // // TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0)) // Confusion table // ||====================== // PREDICTED || positive | negative | Recall // TRUTH ||====================== // positive || 184 | 54 | 0.7731 // negative || 156 | 106 | 0.4046 // ||====================== // Precision || 0.5412 | 0.6625 | }