Exemple #1
0
        } //end MoveAngular

        internal void LimitRotation(float timestep)
        {
            SafeNativeMethods.Quaternion rot = SafeNativeMethods.BodyGetQuaternion(Body);
            Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);    // rotq = rotation of object

            SafeNativeMethods.Quaternion m_rot = new SafeNativeMethods.Quaternion();
            bool changed = false;

            m_rot.X = rotq.X;
            m_rot.Y = rotq.Y;
            m_rot.Z = rotq.Z;
            m_rot.W = rotq.W;
            if (m_RollreferenceFrame != Quaternion.Identity)
            {
                if (rotq.X >= m_RollreferenceFrame.X)
                {
                    m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
                }
                if (rotq.Y >= m_RollreferenceFrame.Y)
                {
                    m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
                }
                if (rotq.X <= -m_RollreferenceFrame.X)
                {
                    m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
                }
                if (rotq.Y <= -m_RollreferenceFrame.Y)
                {
                    m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
                }
                changed = true;
            }
            if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
            {
                m_rot.X = 0;
                m_rot.Y = 0;
                changed = true;
            }
            if (changed)
            {
                SafeNativeMethods.BodySetQuaternion(Body, ref m_rot);
            }
        }
Exemple #2
0
        } // end MoveLinear()

        private void MoveAngular(float pTimestep)
        {
            /*
             * private Vector3 m_angularMotorDirection = Vector3.Zero;            // angular velocity requested by LSL motor
             * private int m_angularMotorApply = 0;                            // application frame counter
             * private float m_angularMotorVelocity = 0;                        // current angular motor velocity (ramps up and down)
             * private float m_angularMotorTimescale = 0;                        // motor angular velocity ramp up rate
             * private float m_angularMotorDecayTimescale = 0;                    // motor angular velocity decay rate
             * private Vector3 m_angularFrictionTimescale = Vector3.Zero;        // body angular velocity  decay rate
             * private Vector3 m_lastAngularVelocity = Vector3.Zero;            // what was last applied to body
             */

            // Get what the body is doing, this includes 'external' influences
            SafeNativeMethods.Vector3 angularVelocity = SafeNativeMethods.BodyGetAngularVel(Body);
            //         Vector3 angularVelocity = Vector3.Zero;

            if (m_angularMotorApply > 0)
            {
                // ramp up to new value
                //   current velocity  +=                         error                       /    (time to get there / step interval)
                //                               requested speed            -  last motor speed
                m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep);
                m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep);
                m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep);

                m_angularMotorApply--;        // This is done so that if script request rate is less than phys frame rate the expected
                                              // velocity may still be acheived.
            }
            else
            {
                // no motor recently applied, keep the body velocity

                /*        m_angularMotorVelocity.X = angularVelocity.X;
                 *      m_angularMotorVelocity.Y = angularVelocity.Y;
                 *      m_angularMotorVelocity.Z = angularVelocity.Z; */

                // and decay the velocity
                m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep);
            } // end motor section

            // Vertical attractor section
            Vector3 vertattr = Vector3.Zero;

            if (m_verticalAttractionTimescale < 300)
            {
                float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep);
                // get present body rotation
                SafeNativeMethods.Quaternion rot = SafeNativeMethods.BodyGetQuaternion(Body);
                Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W);
                // make a vector pointing up
                Vector3 verterr = Vector3.Zero;
                verterr.Z = 1.0f;
                // rotate it to Body Angle
                verterr = verterr * rotq;
                // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1.
                // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go
                // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body.
                if (verterr.Z < 0.0f)
                {
                    verterr.X = 2.0f - verterr.X;
                    verterr.Y = 2.0f - verterr.Y;
                }
                // Error is 0 (no error) to +/- 2 (max error)
                // scale it by VAservo
                verterr = verterr * VAservo;
//if (frcount == 0) Console.WriteLine("VAerr=" + verterr);

                // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so
                // Change  Body angular velocity  X based on Y, and Y based on X. Z is not changed.
                vertattr.X = verterr.Y;
                vertattr.Y = -verterr.X;
                vertattr.Z = 0f;

                // scaling appears better usingsquare-law
                float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency);
                vertattr.X += bounce * angularVelocity.X;
                vertattr.Y += bounce * angularVelocity.Y;
            } // else vertical attractor is off

            //        m_lastVertAttractor = vertattr;

            // Bank section tba
            // Deflection section tba

            // Sum velocities
            m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection

            if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
            {
                m_lastAngularVelocity.X = 0;
                m_lastAngularVelocity.Y = 0;
            }

            if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f))
            {
                if (!SafeNativeMethods.BodyIsEnabled(Body))
                {
                    SafeNativeMethods.BodyEnable(Body);
                }
            }
            else
            {
                m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero.
            }

            // apply friction
            Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep);

            m_lastAngularVelocity -= m_lastAngularVelocity * decayamount;

            // Apply to the body
            SafeNativeMethods.BodySetAngularVel(Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z);
        } //end MoveAngular
Exemple #3
0
        }// end Step

        private void MoveLinear(float pTimestep, OdeScene _pParentScene)
        {
            if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f))  // requested m_linearMotorDirection is significant
            {
                if (!SafeNativeMethods.BodyIsEnabled(Body))
                {
                    SafeNativeMethods.BodyEnable(Body);
                }

                // add drive to body
                Vector3 addAmount = m_linearMotorDirection / (m_linearMotorTimescale / pTimestep);
                m_lastLinearVelocityVector += (addAmount * 10);  // lastLinearVelocityVector is the current body velocity vector?

                // This will work temporarily, but we really need to compare speed on an axis
                // KF: Limit body velocity to applied velocity?
                if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X))
                {
                    m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X;
                }
                if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y))
                {
                    m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y;
                }
                if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z))
                {
                    m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z;
                }

                // decay applied velocity
                Vector3 decayfraction = ((Vector3.One / (m_linearMotorDecayTimescale / pTimestep)));
                //Console.WriteLine("decay: " + decayfraction);
                m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f;
                //Console.WriteLine("actual: " + m_linearMotorDirection);
            }
            else
            {        // requested is not significant
                     // if what remains of applied is small, zero it.
                if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f))
                {
                    m_lastLinearVelocityVector = Vector3.Zero;
                }
            }

            // convert requested object velocity to world-referenced vector
            m_dir = m_lastLinearVelocityVector;
            SafeNativeMethods.Quaternion rot = SafeNativeMethods.BodyGetQuaternion(Body);
            Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object

            m_dir *= rotq;                                                // apply obj rotation to velocity vector

            // add Gravity andBuoyancy
            // KF: So far I have found no good method to combine a script-requested
            // .Z velocity and gravity. Therefore only 0g will used script-requested
            // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only.
            Vector3 grav = Vector3.Zero;

            // There is some gravity, make a gravity force vector
            // that is applied after object velocity.
            SafeNativeMethods.Mass objMass;
            SafeNativeMethods.BodyGetMass(Body, out objMass);
            // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g;
            grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy);
            // Preserve the current Z velocity
            SafeNativeMethods.Vector3 vel_now = SafeNativeMethods.BodyGetLinearVel(Body);
            m_dir.Z = vel_now.Z;        // Preserve the accumulated falling velocity

            SafeNativeMethods.Vector3 pos = SafeNativeMethods.BodyGetPosition(Body);
//            Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f);
            Vector3 posChange = new Vector3();

            posChange.X = pos.X - m_lastPositionVector.X;
            posChange.Y = pos.Y - m_lastPositionVector.Y;
            posChange.Z = pos.Z - m_lastPositionVector.Z;
            double Zchange = Math.Abs(posChange.Z);

            if (m_BlockingEndPoint != Vector3.Zero)
            {
                if (pos.X >= (m_BlockingEndPoint.X - (float)1))
                {
                    pos.X -= posChange.X + 1;
                    SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
                }
                if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
                {
                    pos.Y -= posChange.Y + 1;
                    SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
                }
                if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
                {
                    pos.Z -= posChange.Z + 1;
                    SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
                }
                if (pos.X <= 0)
                {
                    pos.X += posChange.X + 1;
                    SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
                }
                if (pos.Y <= 0)
                {
                    pos.Y += posChange.Y + 1;
                    SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
                }
            }
            if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y))
            {
                pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2;
                SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z);
            }

            // Check if hovering
            if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
            {
                // We should hover, get the target height
                if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0)
                {
                    m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight;
                }
                if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
                {
                    m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight;
                }
                if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
                {
                    m_VhoverTargetHeight = m_VhoverHeight;
                }

                if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0)
                {
                    // If body is aready heigher, use its height as target height
                    if (pos.Z > m_VhoverTargetHeight)
                    {
                        m_VhoverTargetHeight = pos.Z;
                    }
                }
                if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
                {
                    if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2)
                    {
                        SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, m_VhoverTargetHeight);
                    }
                }
                else
                {
                    float herr0 = pos.Z - m_VhoverTargetHeight;
                    // Replace Vertical speed with correction figure if significant
                    if (Math.Abs(herr0) > 0.01f)
                    {
                        m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale);
                        //KF: m_VhoverEfficiency is not yet implemented
                    }
                    else
                    {
                        m_dir.Z = 0f;
                    }
                }

//                m_VhoverEfficiency = 0f;    // 0=boucy, 1=Crit.damped
//                m_VhoverTimescale = 0f;        // time to acheive height
//                pTimestep  is time since last frame,in secs
            }

            if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
            {
                //Start Experimental Values
                if (Zchange > .3)
                {
                    grav.Z = (float)(grav.Z * 3);
                }
                if (Zchange > .15)
                {
                    grav.Z = (float)(grav.Z * 2);
                }
                if (Zchange > .75)
                {
                    grav.Z = (float)(grav.Z * 1.5);
                }
                if (Zchange > .05)
                {
                    grav.Z = (float)(grav.Z * 1.25);
                }
                if (Zchange > .025)
                {
                    grav.Z = (float)(grav.Z * 1.125);
                }
                float terraintemp = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y);
                float postemp     = (pos.Z - terraintemp);
                if (postemp > 2.5f)
                {
                    grav.Z = (float)(grav.Z * 1.037125);
                }
                //End Experimental Values
            }
            if ((m_flags & (VehicleFlag.NO_X)) != 0)
            {
                m_dir.X = 0;
            }
            if ((m_flags & (VehicleFlag.NO_Y)) != 0)
            {
                m_dir.Y = 0;
            }
            if ((m_flags & (VehicleFlag.NO_Z)) != 0)
            {
                m_dir.Z = 0;
            }

            m_lastPositionVector = SafeNativeMethods.BodyGetPosition(Body);

            // Apply velocity
            SafeNativeMethods.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z);
            // apply gravity force
            SafeNativeMethods.BodyAddForce(Body, grav.X, grav.Y, grav.Z);


            // apply friction
            Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep);

            m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount;
        } // end MoveLinear()