/// <summary> /// Signs the message using the context's session key. /// </summary> /// <remarks> /// The structure of the returned buffer is as follows: /// - 4 bytes, unsigned big-endian integer indicating the length of the plaintext message /// - 2 bytes, unsigned big-endian integer indicating the length of the signture /// - The plaintext message /// - The message's signature. /// </remarks> /// <param name="message"></param> /// <returns></returns> public byte[] MakeSignature(byte[] message) { SecurityStatus status = SecurityStatus.InternalError; SecPkgContext_Sizes sizes; SecureBuffer dataBuffer; SecureBuffer signatureBuffer; SecureBufferAdapter adapter; CheckLifecycle(); sizes = QueryBufferSizes(); dataBuffer = new SecureBuffer(new byte[message.Length], BufferType.Data); signatureBuffer = new SecureBuffer(new byte[sizes.MaxSignature], BufferType.Token); Array.Copy(message, dataBuffer.Buffer, message.Length); using (adapter = new SecureBufferAdapter(new[] { dataBuffer, signatureBuffer })) { status = ContextNativeMethods.SafeMakeSignature( this.ContextHandle, 0, adapter, 0 ); } if (status != SecurityStatus.OK) { SSPIException exc = new SSPIException("Failed to create message signature.", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } byte[] outMessage; int position = 0; // Enough room for // - original message length (4 bytes) // - signature length (2 bytes) // - original message // - signature outMessage = new byte[4 + 2 + dataBuffer.Length + signatureBuffer.Length]; ByteWriter.WriteInt32_BE(dataBuffer.Length, outMessage, position); position += 4; ByteWriter.WriteInt16_BE((Int16)signatureBuffer.Length, outMessage, position); position += 2; Array.Copy(dataBuffer.Buffer, 0, outMessage, position, dataBuffer.Length); position += dataBuffer.Length; Array.Copy(signatureBuffer.Buffer, 0, outMessage, position, signatureBuffer.Length); position += signatureBuffer.Length; return(outMessage); }
/// <summary> /// Queries the security package's expections regarding message/token/signature/padding buffer sizes. /// </summary> /// <returns></returns> private SecPkgContext_Sizes QueryBufferSizes() { SecPkgContext_Sizes sizes = new SecPkgContext_Sizes(); SecurityStatus status = SecurityStatus.InternalError; bool gotRef = false; RuntimeHelpers.PrepareConstrainedRegions(); try { this.ContextHandle.DangerousAddRef(ref gotRef); } catch (Exception) { if (gotRef) { this.ContextHandle.DangerousRelease(); gotRef = false; } throw; } finally { if (gotRef) { status = ContextNativeMethods.QueryContextAttributes_Sizes( ref this.ContextHandle.rawHandle, ContextQueryAttrib.Sizes, ref sizes ); this.ContextHandle.DangerousRelease(); } } if (status != SecurityStatus.OK) { SSPIException exc = new SSPIException("Failed to query context buffer size attributes", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } return(sizes); }
private void Init(CredentialUse use) { string packageName; TimeStamp rawExpiry = new TimeStamp(); SecurityStatus status = SecurityStatus.InternalError; // -- Package -- // Copy off for the call, since this.SecurityPackage is a property. packageName = this.SecurityPackage; this.Handle = new SafeCredentialHandle(); // The finally clause is the actual constrained region. The VM pre-allocates any stack space, // performs any allocations it needs to prepare methods for execution, and postpones any // instances of the 'uncatchable' exceptions (ThreadAbort, StackOverflow, OutOfMemory). RuntimeHelpers.PrepareConstrainedRegions(); try { } finally { status = CredentialNativeMethods.AcquireCredentialsHandle( null, packageName, use, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero, ref this.Handle.rawHandle, ref rawExpiry ); } if (status != SecurityStatus.OK) { SSPIException exc = new SSPIException("Failed to call AcquireCredentialHandle", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } this.Expiry = rawExpiry.ToDateTime(); }
/// <summary> /// Verifies the signature of a signed message /// </summary> /// <remarks> /// The expected structure of the signed message buffer is as follows: /// - 4 bytes, unsigned integer in big endian format indicating the length of the plaintext message /// - 2 bytes, unsigned integer in big endian format indicating the length of the signture /// - The plaintext message /// - The message's signature. /// </remarks> /// <param name="signedMessage">The packed signed message.</param> /// <param name="origMessage">The extracted original message.</param> /// <returns>True if the message has a valid signature, false otherwise.</returns> public bool VerifySignature(byte[] signedMessage, out byte[] origMessage) { SecurityStatus status = SecurityStatus.InternalError; SecPkgContext_Sizes sizes; SecureBuffer dataBuffer; SecureBuffer signatureBuffer; SecureBufferAdapter adapter; CheckLifecycle(); sizes = QueryBufferSizes(); if (signedMessage.Length < 2 + 4 + sizes.MaxSignature) { throw new ArgumentException("Input message is too small to possibly fit a valid message"); } int position = 0; int messageLen; int sigLen; messageLen = ByteWriter.ReadInt32_BE(signedMessage, 0); position += 4; sigLen = ByteWriter.ReadInt16_BE(signedMessage, position); position += 2; if (messageLen + sigLen + 2 + 4 > signedMessage.Length) { throw new ArgumentException("The buffer contains invalid data - the embedded length data does not add up."); } dataBuffer = new SecureBuffer(new byte[messageLen], BufferType.Data); Array.Copy(signedMessage, position, dataBuffer.Buffer, 0, messageLen); position += messageLen; signatureBuffer = new SecureBuffer(new byte[sigLen], BufferType.Token); Array.Copy(signedMessage, position, signatureBuffer.Buffer, 0, sigLen); position += sigLen; using (adapter = new SecureBufferAdapter(new[] { dataBuffer, signatureBuffer })) { status = ContextNativeMethods.SafeVerifySignature( this.ContextHandle, 0, adapter, 0 ); } if (status == SecurityStatus.OK) { origMessage = dataBuffer.Buffer; return(true); } else if (status == SecurityStatus.MessageAltered || status == SecurityStatus.OutOfSequence) { origMessage = null; return(false); } else { SSPIException exc = new SSPIException("Failed to determine the veracity of a signed message.", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } }
/// <summary> /// Encrypts the byte array using the context's session key. /// </summary> /// <remarks> /// The structure of the returned data is as follows: /// - 2 bytes, an unsigned big-endian integer indicating the length of the trailer buffer size /// - 4 bytes, an unsigned big-endian integer indicating the length of the message buffer size. /// - 2 bytes, an unsigned big-endian integer indicating the length of the encryption padding buffer size. /// - The trailer buffer /// - The message buffer /// - The padding buffer. /// </remarks> /// <param name="input">The raw message to encrypt.</param> /// <returns>The packed and encrypted message.</returns> public byte[] Encrypt(byte[] input) { // The message is encrypted in place in the buffer we provide to Win32 EncryptMessage SecPkgContext_Sizes sizes; SecureBuffer trailerBuffer; SecureBuffer dataBuffer; SecureBuffer paddingBuffer; SecureBufferAdapter adapter; SecurityStatus status = SecurityStatus.InvalidHandle; byte[] result; CheckLifecycle(); sizes = QueryBufferSizes(); trailerBuffer = new SecureBuffer(new byte[sizes.SecurityTrailer], BufferType.Token); dataBuffer = new SecureBuffer(new byte[input.Length], BufferType.Data); paddingBuffer = new SecureBuffer(new byte[sizes.BlockSize], BufferType.Padding); Array.Copy(input, dataBuffer.Buffer, input.Length); using (adapter = new SecureBufferAdapter(new[] { trailerBuffer, dataBuffer, paddingBuffer })) { status = ContextNativeMethods.SafeEncryptMessage( this.ContextHandle, 0, adapter, 0 ); } if (status != SecurityStatus.OK) { SSPIException exc = new SSPIException("Failed to encrypt message", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } int position = 0; // Enough room to fit: // -- 2 bytes for the trailer buffer size // -- 4 bytes for the message size // -- 2 bytes for the padding size. // -- The encrypted message result = new byte[2 + 4 + 2 + trailerBuffer.Length + dataBuffer.Length + paddingBuffer.Length]; ByteWriter.WriteInt16_BE((short)trailerBuffer.Length, result, position); position += 2; ByteWriter.WriteInt32_BE(dataBuffer.Length, result, position); position += 4; ByteWriter.WriteInt16_BE((short)paddingBuffer.Length, result, position); position += 2; Array.Copy(trailerBuffer.Buffer, 0, result, position, trailerBuffer.Length); position += trailerBuffer.Length; Array.Copy(dataBuffer.Buffer, 0, result, position, dataBuffer.Length); position += dataBuffer.Length; Array.Copy(paddingBuffer.Buffer, 0, result, position, paddingBuffer.Length); position += paddingBuffer.Length; return(result); }
/// <summary> /// Performs and continues the authentication cycle. /// </summary> /// <remarks> /// This method is performed iteratively to start, continue, and end the authentication cycle with the /// server. Each stage works by acquiring a token from one side, presenting it to the other side /// which in turn may generate a new token. /// /// The cycle typically starts and ends with the client. On the first invocation on the client, /// no server token exists, and null is provided in its place. The client returns its status, providing /// its output token for the server. The server accepts the clients token as input and provides a /// token as output to send back to the client. This cycle continues until the server and client /// both indicate, typically, a SecurityStatus of 'OK'. /// </remarks> /// <param name="serverToken">The most recently received token from the server, or null if beginning /// the authentication cycle.</param> /// <param name="outToken">The clients next authentication token in the authentication cycle.</param> /// <returns>A status message indicating the progression of the authentication cycle. /// A status of 'OK' indicates that the cycle is complete, from the client's perspective. If the outToken /// is not null, it must be sent to the server. /// A status of 'Continue' indicates that the output token should be sent to the server and /// a response should be anticipated.</returns> public SecurityStatus Init(byte[] serverToken, out byte[] outToken) { TimeStamp rawExpiry = new TimeStamp(); rawExpiry.time = 10000; SecurityStatus status; SecureBuffer outTokenBuffer; SecureBufferAdapter outAdapter; SecureBuffer serverBuffer; SecureBufferAdapter serverAdapter; if (this.Disposed) { throw new ObjectDisposedException("ClientContext"); } else if ((serverToken != null) && (this.ContextHandle.IsInvalid)) { throw new InvalidOperationException("Out-of-order usage detected - have a server token, but no previous client token had been created."); } else if ((serverToken == null) && (this.ContextHandle.IsInvalid == false)) { throw new InvalidOperationException("Must provide the server's response when continuing the init process."); } // The security package tells us how big its biggest token will be. We'll allocate a buffer // that size, and it'll tell us how much it used. outTokenBuffer = new SecureBuffer( new byte[this.Credential.PackageInfo.MaxTokenLength], BufferType.Token ); serverBuffer = null; if (serverToken != null) { serverBuffer = new SecureBuffer(serverToken, BufferType.Token); } // Some notes on handles and invoking InitializeSecurityContext // - The first time around, the phContext parameter (the 'old' handle) is a null pointer to what // would be an RawSspiHandle, to indicate this is the first time it's being called. // The phNewContext is a pointer (reference) to an RawSspiHandle struct of where to write the // new handle's values. // - The next time you invoke ISC, it takes a pointer to the handle it gave you last time in phContext, // and takes a pointer to where it should write the new handle's values in phNewContext. // - After the first time, you can provide the same handle to both parameters. From MSDN: // "On the second call, phNewContext can be the same as the handle specified in the phContext // parameter." // It will overwrite the handle you gave it with the new handle value. // - All handle structures themselves are actually *two* pointer variables, eg, 64 bits on 32-bit // Windows, 128 bits on 64-bit Windows. // - So in the end, on a 64-bit machine, we're passing a 64-bit value (the pointer to the struct) that // points to 128 bits of memory (the struct itself) for where to write the handle numbers. using (outAdapter = new SecureBufferAdapter(outTokenBuffer)) { if (this.ContextHandle.IsInvalid) { status = ContextNativeMethods.InitializeSecurityContext_1( ref this.Credential.Handle.rawHandle, IntPtr.Zero, this.ServerPrinc, this.requestedAttribs, 0, SecureBufferDataRep.Network, IntPtr.Zero, 0, ref this.ContextHandle.rawHandle, outAdapter.Handle, ref this.finalAttribs, ref rawExpiry ); } else { using (serverAdapter = new SecureBufferAdapter(serverBuffer)) { status = ContextNativeMethods.InitializeSecurityContext_2( ref this.Credential.Handle.rawHandle, ref this.ContextHandle.rawHandle, this.ServerPrinc, this.requestedAttribs, 0, SecureBufferDataRep.Network, serverAdapter.Handle, 0, ref this.ContextHandle.rawHandle, outAdapter.Handle, ref this.finalAttribs, ref rawExpiry ); } } } if (status.IsError() == false) { if (status == SecurityStatus.OK) { base.Initialize(DateTime.Now.AddSeconds(10)); } outToken = null; if (outTokenBuffer.Length != 0) { outToken = new byte[outTokenBuffer.Length]; Array.Copy(outTokenBuffer.Buffer, outToken, outToken.Length); } } else { SSPIException exc = new SSPIException("Failed to invoke InitializeSecurityContext for a client", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } return(status); }
/// <summary> /// Performs and continues the authentication cycle. /// </summary> /// <remarks> /// This method is performed iteratively to continue and end the authentication cycle with the /// client. Each stage works by acquiring a token from one side, presenting it to the other side /// which in turn may generate a new token. /// /// The cycle typically starts and ends with the client. On the first invocation on the client, /// no server token exists, and null is provided in its place. The client returns its status, providing /// its output token for the server. The server accepts the clients token as input and provides a /// token as output to send back to the client. This cycle continues until the server and client /// both indicate, typically, a SecurityStatus of 'OK'. /// </remarks> /// <param name="clientToken">The most recently received token from the client.</param> /// <param name="nextToken">The servers next authentication token in the cycle, that must /// be sent to the client.</param> /// <returns>A status message indicating the progression of the authentication cycle. /// A status of 'OK' indicates that the cycle is complete, from the servers's perspective. If the nextToken /// is not null, it must be sent to the client. /// A status of 'Continue' indicates that the output token should be sent to the client and /// a response should be anticipated.</returns> public SecurityStatus AcceptToken(byte[] clientToken, out byte[] nextToken) { SecureBuffer clientBuffer; SecureBuffer outBuffer; SecurityStatus status; TimeStamp rawExpiry = new TimeStamp(); rawExpiry.time = 10000; SecureBufferAdapter clientAdapter; SecureBufferAdapter outAdapter; if (this.Disposed) { throw new ObjectDisposedException("ServerContext"); } else if (this.Initialized) { throw new InvalidOperationException( "Attempted to continue initialization of a ServerContext after initialization had completed." ); } clientBuffer = new SecureBuffer(clientToken, BufferType.Token); outBuffer = new SecureBuffer( new byte[this.Credential.PackageInfo.MaxTokenLength], BufferType.Token ); using (clientAdapter = new SecureBufferAdapter(clientBuffer)) { using (outAdapter = new SecureBufferAdapter(outBuffer)) { if (this.ContextHandle.IsInvalid) { status = ContextNativeMethods.AcceptSecurityContext_1( ref this.Credential.Handle.rawHandle, IntPtr.Zero, clientAdapter.Handle, requestedAttribs, SecureBufferDataRep.Network, ref this.ContextHandle.rawHandle, outAdapter.Handle, ref this.finalAttribs, ref rawExpiry ); } else { status = ContextNativeMethods.AcceptSecurityContext_2( ref this.Credential.Handle.rawHandle, ref this.ContextHandle.rawHandle, clientAdapter.Handle, requestedAttribs, SecureBufferDataRep.Network, ref this.ContextHandle.rawHandle, outAdapter.Handle, ref this.finalAttribs, ref rawExpiry ); } } } if (status == SecurityStatus.OK) { nextToken = null; base.Initialize(DateTime.Now.AddSeconds(10)); if (outBuffer.Length != 0) { nextToken = new byte[outBuffer.Length]; Array.Copy(outBuffer.Buffer, nextToken, nextToken.Length); } else { nextToken = null; } } else if (status == SecurityStatus.ContinueNeeded) { nextToken = new byte[outBuffer.Length]; Array.Copy(outBuffer.Buffer, nextToken, nextToken.Length); } else { SSPIException exc = new SSPIException("Failed to call AcceptSecurityContext", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } return(status); }
/// <summary> /// Changes the current thread's security context to impersonate the user of the client. /// </summary> /// <remarks> /// Requires that the security package provided with the server's credentials, as well as the /// client's credentials, support impersonation. /// /// Currently, only one thread may initiate impersonation per security context. Impersonation may /// follow threads created by the initial impersonation thread, however. /// </remarks> /// <returns>A handle to capture the lifetime of the impersonation. Dispose the handle to revert /// impersonation. If the handle is leaked, the impersonation will automatically revert at a /// non-deterministic time when the handle is finalized by the Garbage Collector.</returns> public ImpersonationHandle ImpersonateClient() { ImpersonationHandle handle; SecurityStatus status = SecurityStatus.InternalError; bool gotRef = false; if (this.Disposed) { throw new ObjectDisposedException("ServerContext"); } else if (this.Initialized == false) { throw new InvalidOperationException( "The server context has not been completely initialized." ); } else if (impersonating) { throw new InvalidOperationException("Cannot impersonate again while already impersonating."); } else if (this.SupportsImpersonate == false) { throw new InvalidOperationException( "The ServerContext is using a security package that does not support impersonation." ); } handle = new ImpersonationHandle(this); RuntimeHelpers.PrepareConstrainedRegions(); try { this.ContextHandle.DangerousAddRef(ref gotRef); } catch (Exception) { if (gotRef) { this.ContextHandle.DangerousRelease(); gotRef = false; } throw; } finally { if (gotRef) { status = ContextNativeMethods.ImpersonateSecurityContext( ref this.ContextHandle.rawHandle ); this.ContextHandle.DangerousRelease(); this.impersonating = true; } } if (status == SecurityStatus.NoImpersonation) { SSPIException exc = new SSPIException("Impersonation could not be performed.", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } else if (status == SecurityStatus.Unsupported) { SSPIException exc = new SSPIException("Impersonation is not supported by the security context's Security Support Provider.", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } else if (status != SecurityStatus.OK) { SSPIException exc = new SSPIException("Failed to impersonate the client", status); throw new SecurityException(ErrorHandling.ErrorCodes.Security.SSPI_ERROR, new string[] { exc.Message }); } return(handle); }