public void RegressionGradientBoostModel_GetVariableImportance() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var featureNameToIndex = new Dictionary <string, int> { { "AptitudeTestScore", 0 }, { "PreviousExperience_month", 1 } }; var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var actual = sut.GetVariableImportance(featureNameToIndex); var expected = new Dictionary <string, double> { { "PreviousExperience_month", 100.0 }, { "AptitudeTestScore", 72.1682473281495 } }; Assert.AreEqual(expected.Count, actual.Count); var zip = expected.Zip(actual, (e, a) => new { Expected = e, Actual = a }); foreach (var item in zip) { Assert.AreEqual(item.Expected.Key, item.Actual.Key); Assert.AreEqual(item.Expected.Value, item.Actual.Value, 0.000001); } }
public void RegressionGradientBoostModel_GetVariableImportance() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var featureNameToIndex = new Dictionary <string, int> { { "AptitudeTestScore", 0 }, { "PreviousExperience_month", 1 } }; var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var actual = sut.GetVariableImportance(featureNameToIndex); var expected = new Dictionary <string, double> { { "PreviousExperience_month", 100.0 }, { "AptitudeTestScore", 72.1682473281495 } }; Assert.AreEqual(expected.Count, actual.Count); var zip = expected.Zip(actual, (e, a) => new { Expected = e, Actual = a }); foreach (var item in zip) { Assert.AreEqual(item.Expected.Key, item.Actual.Key); Assert.AreEqual(item.Expected.Value, item.Actual.Value, 0.000001); } }
public void RegressionGradientBoostModel_Precit_Multiple() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var predictions = sut.Predict(observations); var evaluator = new MeanAbsolutErrorRegressionMetric(); var error = evaluator.Error(targets, predictions); Assert.AreEqual(0.045093177702025665, error, 0.0000001); }
public void RegressionGradientBoostModel_GetRawVariableImportance() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var actual = sut.GetRawVariableImportance(); var expected = new double[] { 31.124562320186836, 43.127779144563753 }; Assert.AreEqual(expected.Length, actual.Length); for (int i = 0; i < expected.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.000001); } }
public void RegressionGradientBoostModel_Precit_Multiple() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var rows = targets.Length; var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var predictions = sut.Predict(observations); var evaluator = new MeanAbsolutErrorRegressionMetric(); var error = evaluator.Error(targets, predictions); Assert.AreEqual(0.045093177702025665, error, 0.0000001); }
public void RegressionGradientBoostModel_GetRawVariableImportance() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var actual = sut.GetRawVariableImportance(); var expected = new double[] { 31.124562320186836, 43.127779144563753 }; Assert.AreEqual(expected.Length, actual.Length); for (int i = 0; i < expected.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.000001); } }
public void RegressionGradientBoostModel_Predict_Single() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learner = new RegressionGradientBoostLearner(100, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); var rows = targets.Length; var predictions = new double[rows]; for (int i = 0; i < rows; i++) { predictions[i] = sut.Predict(observations.Row(i)); } var evaluator = new MeanAbsolutErrorRegressionMetric(); var error = evaluator.Error(targets, predictions); Assert.AreEqual(0.045093177702025665, error, 0.0000001); }
public void RegressionGradientBoostModel_Save() { var(observations, targets) = DataSetUtilities.LoadAptitudeDataSet(); var learner = new RegressionGradientBoostLearner(2, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); // save model. var writer = new StringWriter(); sut.Save(() => writer); // load model and assert prediction results. sut = RegressionGradientBoostModel.Load(() => new StringReader(writer.ToString())); var predictions = sut.Predict(observations); var evaluator = new MeanSquaredErrorRegressionMetric(); var actual = evaluator.Error(targets, predictions); Assert.AreEqual(0.192163332018409, actual, 0.0001); }
public void RegressionGradientBoostModel_Save() { var parser = new CsvParser(() => new StringReader(Resources.AptitudeData)); var observations = parser.EnumerateRows(v => v != "Pass").ToF64Matrix(); var targets = parser.EnumerateRows("Pass").ToF64Vector(); var learner = new RegressionGradientBoostLearner(2, 0.1, 3, 1, 1e-6, 1.0, 0, new GradientBoostSquaredLoss(), false); var sut = learner.Learn(observations, targets); // save model. var writer = new StringWriter(); sut.Save(() => writer); // load model and assert prediction results. sut = RegressionGradientBoostModel.Load(() => new StringReader(writer.ToString())); var predictions = sut.Predict(observations); var evaluator = new MeanSquaredErrorRegressionMetric(); var actual = evaluator.Error(targets, predictions); Assert.AreEqual(0.192163332018409, actual, 0.0001); }