Exemple #1
0
 public Task <RegressionPrediction> Predict(RegressionData data)
 {
     return(Task.Run(() =>
     {
         return _model.Predict(data);
     }));
 }
Exemple #2
0
        public static void InitRegressionPrediction()
        {
            // load the mlContext and data path
            regressionPredict.LoadData(mlContext, regressionData);

            // create the model, boolean to force model retrain
            regressionPredict.BuildAndTrainModel();

            // evaluate the model against test data
            regressionPredict.Evaluate();

            // test output with a test method

            var sample =
                new RegressionData {
                VendorId       = "VTS",
                RateCode       = "1",
                PassengerCount = 1,
                TripTime       = 900,
                TripDistance   = 8.63f,
                PaymentType    = "CRD",
                FareAmount     = 0             // To predict. Actual/Observed = 15.5
            };

            regressionPredict.TestModel(sample);
        }
        public void Predict(MLContext mlContext, ITransformer model, RegressionData dataSample)
        {
            var predictionFunction = mlContext.Model.CreatePredictionEngine <RegressionData, RegressionPrediction>(model);

            var prediction = predictionFunction.Predict(dataSample);

            Console.WriteLine($"**********************************************************************");
            // Console.WriteLine($"Predicted fare: {prediction.FareAmount:0.####}, actual fare: 15.5");
            Console.WriteLine($"Prediction: {prediction.Result:0.####}");
            Console.WriteLine($"**********************************************************************");
        }
        public void TestModel(RegressionData sample)
        {
            // var taxiTripSample = new RegressionData()
            //         {
            //	Date = ("2/01/2023"),
            //	VendorId = "VTS",
            //	RateCode = "1",
            //	PassengerCount = 1,
            //	TripTime = 1140,
            //	TripDistance = tripDistance,
            //	PaymentType = "CRD",
            //	FareAmount = 0 // To predict. Actual/Observed = 15.5
            //};

            var predictionFunction = mlContext.Model.CreatePredictionEngine <RegressionData, RegressionPrediction>(trainedModel);

            var prediction = predictionFunction.Predict(sample);

            Console.WriteLine($"**********************************************************************");
            Console.WriteLine($"Prediction: {prediction.Result:0.####}");
            Console.WriteLine($"**********************************************************************");
        }
Exemple #5
0
    RegressionData calculateRegression(List<double> coords)
    {
        double xySum = 0;
        double xSquaredSum = 0;
        double ySquaredSum = 0;
        double ySum = 0;
        double xSum = 0;
        double mean;
        for (int i = 1; i < coords.Count; i++)
        {
            double x = i;
            double xSquared = x * x;
            double y = coords[i - 1];
            double ySquared = y * y;
            double xy = x * y;
            xSum += x;
            ySum += y;
            xySum += xy;
            xSquaredSum += xSquared;
            ySquaredSum += ySquared;
        }

        double a = ( (ySum * xSquaredSum) - (xSum * xySum) ) / ( (coords.Count * xSquaredSum) - (xSum * xSum) );
        double b = ((coords.Count * xySum) - (xSum * ySum) ) / ( ( coords.Count * xSquaredSum) - (xSum * xSum) );

        //Determine regression line
        // y = a + bx
        List<double> yData = new List<double>();
        for (int i = 1; i < coords.Count; i++)
        {
            double x = i;
            double y = a + (b * x);
            yData.Add(y);
        }

        RegressionData regData = new RegressionData();
        regData.yVals = yData;

        //Calculate standard deviation of regression line
        ySum = 0;
        //First calculate sum
        for (int i = 1; i < yData.Count; i++)
        {
            ySum += yData[i - 1];
        }

        mean = ySum / yData.Count;

        //Next calculate deviations
        List<double> deviations = new List<double>();
        double devSquaredSum = 0;
        for (int i = 1; i < yData.Count; i++)
        {
            double dev = yData[i - 1] - mean;
            double devSquared = dev * dev;
            devSquaredSum += devSquared;
        }

        double standardDev = System.Math.Sqrt(devSquaredSum / (yData.Count - 1));
        regData.a = a;
        regData.b = b;
        regData.standardDev = standardDev;
        regData.yVals = yData;
        return regData;
    }