Exemple #1
0
    public static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();

        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(MyMediaLite.Util.Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // recommender arguments
        string method = "MostPopular";
        string recommender_options = string.Empty;

        // help/version
        bool show_help    = false;
        bool show_version = false;

        // variables for iteration search
        int    find_iter    = 0;
        int    max_iter     = 500;
        double auc_cutoff   = 0;
        double prec5_cutoff = 0;

        compute_fit = false;

        // other parameters
        string save_model_file = string.Empty;
        string load_model_file = string.Empty;
        int    random_seed     = -1;
        string prediction_file = string.Empty;

        test_ratio = 0;

        var p = new OptionSet()
        {
            // string-valued options
            { "training-file=", v => training_file = v },
            { "test-file=", v => test_file = v },
            { "recommender=", v => method = v },
            { "recommender-options=", v => recommender_options += " " + v },
            { "data-dir=", v => data_dir = v },
            { "user-attributes=", v => user_attributes_file = v },
            { "item-attributes=", v => item_attributes_file = v },
            { "user-relations=", v => user_relations_file = v },
            { "item-relations=", v => item_relations_file = v },
            { "save-model=", v => save_model_file = v },
            { "load-model=", v => load_model_file = v },
            { "prediction-file=", v => prediction_file = v },
            { "relevant-users=", v => relevant_users_file = v },
            { "relevant-items=", v => relevant_items_file = v },
            // integer-valued options
            { "find-iter=", (int v) => find_iter = v },
            { "max-iter=", (int v) => max_iter = v },
            { "random-seed=", (int v) => random_seed = v },
            { "predict-items-number=", (int v) => predict_items_number = v },
            // double-valued options
//			{ "epsilon=",             (double v) => epsilon      = v },
            { "auc-cutoff=", (double v) => auc_cutoff = v },
            { "prec5-cutoff=", (double v) => prec5_cutoff = v },
            { "test-ratio=", (double v) => test_ratio = v },
            // enum options
            //   * currently none *
            // boolean options
            { "compute-fit", v => compute_fit = v != null },
            { "online-evaluation", v => online_eval = v != null },
            { "filtered-evaluation", v => filtered_eval = v != null },
            { "help", v => show_help = v != null },
            { "version", v => show_version = v != null },
        };
        IList <string> extra_args = p.Parse(args);

        if (show_version)
        {
            ShowVersion();
        }
        if (show_help)
        {
            Usage(0);
        }

        bool no_eval = test_file == null;

        if (training_file == null)
        {
            Usage("Parameter --training-file=FILE is missing.");
        }

        if (extra_args.Count > 0)
        {
            Usage("Did not understand " + extra_args[0]);
        }

        if (online_eval && filtered_eval)
        {
            Usage("Combination of --online-eval and --filtered-eval is not (yet) supported.");
        }

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        recommender = Recommender.CreateItemRecommender(method);
        if (recommender == null)
        {
            Usage(string.Format("Unknown method: '{0}'", method));
        }

        Recommender.Configure(recommender, recommender_options, Usage);

        // load all the data
        LoadData();
        Utils.DisplayDataStats(training_data, test_data, recommender);

        TimeSpan time_span;

        if (find_iter != 0)
        {
            var iterative_recommender = (IIterativeModel)recommender;
            Console.WriteLine(recommender.ToString() + " ");

            if (load_model_file == string.Empty)
            {
                iterative_recommender.Train();
            }
            else
            {
                Recommender.LoadModel(iterative_recommender, load_model_file);
            }

            if (compute_fit)
            {
                Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", iterative_recommender.ComputeFit()));
            }

            var result = Evaluate();
            Items.DisplayResults(result);
            Console.WriteLine(" iteration " + iterative_recommender.NumIter);

            for (int i = (int)iterative_recommender.NumIter + 1; i <= max_iter; i++)
            {
                TimeSpan t = Utils.MeasureTime(delegate() {
                    iterative_recommender.Iterate();
                });
                training_time_stats.Add(t.TotalSeconds);

                if (i % find_iter == 0)
                {
                    if (compute_fit)
                    {
                        double fit = 0;
                        t = Utils.MeasureTime(delegate() { fit = iterative_recommender.ComputeFit(); });
                        fit_time_stats.Add(t.TotalSeconds);
                        Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", fit));
                    }

                    t = Utils.MeasureTime(delegate() { result = Evaluate(); });
                    eval_time_stats.Add(t.TotalSeconds);
                    Items.DisplayResults(result);
                    Console.WriteLine(" iteration " + i);

                    Recommender.SaveModel(recommender, save_model_file, i);
                    Predict(prediction_file, relevant_users_file, i);

                    if (result["AUC"] < auc_cutoff || result["prec@5"] < prec5_cutoff)
                    {
                        Console.Error.WriteLine("Reached cutoff after {0} iterations.", i);
                        Console.Error.WriteLine("DONE");
                        break;
                    }
                }
            }             // for
            DisplayStats();
        }
        else
        {
            if (load_model_file == string.Empty)
            {
                Console.Write(recommender.ToString() + " ");
                time_span = Utils.MeasureTime(delegate() { recommender.Train(); });
                Console.Write("training_time " + time_span + " ");
            }
            else
            {
                Recommender.LoadModel(recommender, load_model_file);
                Console.Write(recommender.ToString() + " ");
                // TODO is this the right time to load the model?
            }

            if (prediction_file != string.Empty)
            {
                Predict(prediction_file, relevant_users_file);
            }
            else if (!no_eval)
            {
                if (online_eval)
                {
                    time_span = Utils.MeasureTime(delegate() {
                        var result = Items.EvaluateOnline(recommender, test_data, training_data, relevant_users, relevant_items);                         // TODO support also for prediction outputs (to allow external evaluation)
                        Items.DisplayResults(result);
                    });
                }
                else
                {
                    time_span = Utils.MeasureTime(delegate() {
                        var result = Evaluate();
                        Items.DisplayResults(result);
                    });
                }
                Console.Write(" testing_time " + time_span);
            }
            Console.WriteLine();
        }
        Recommender.SaveModel(recommender, save_model_file);
    }
Exemple #2
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();

        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // check number of command line parameters
        if (args.Length < 1)
        {
            Usage("Not enough arguments.");
        }

        // read command line parameters
        string method = args[0];

        RecommenderParameters parameters = null;

        try     { parameters = new RecommenderParameters(args, 1); }
        catch (ArgumentException e) { Usage(e.Message); }

        // arguments for iteration search
        find_iter  = parameters.GetRemoveInt32("find_iter", 0);
        max_iter   = parameters.GetRemoveInt32("max_iter", 500);
        epsilon    = parameters.GetRemoveDouble("epsilon", 1);
        err_cutoff = parameters.GetRemoveDouble("err_cutoff", 2);

        // data arguments
        string data_dir = parameters.GetRemoveString("data_dir");

        if (data_dir != string.Empty)
        {
            data_dir = data_dir + "/mml-track2";
        }
        else
        {
            data_dir = "mml-track2";
        }
        sample_data   = parameters.GetRemoveBool("sample_data", false);
        predict_rated = parameters.GetRemoveBool("predict_rated", false);
        predict_score = parameters.GetRemoveBool("predict_score", false);

        // other arguments
        save_model_file = parameters.GetRemoveString("save_model");
        load_model_file = parameters.GetRemoveString("load_model");
        int random_seed = parameters.GetRemoveInt32("random_seed", -1);

        prediction_file = parameters.GetRemoveString("prediction_file");

        if (predict_rated)
        {
            predict_score = true;
        }

        Console.Error.WriteLine("predict_score={0}", predict_score);

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        recommender_validate = Recommender.CreateItemRecommender(method);
        if (recommender_validate == null)
        {
            Usage(string.Format("Unknown method: '{0}'", method));
        }

        Recommender.Configure(recommender_validate, parameters, Usage);
        recommender_final = recommender_validate.Clone() as ItemRecommender;

        if (parameters.CheckForLeftovers())
        {
            Usage(-1);
        }

        // load all the data
        LoadData(data_dir);

        if (load_model_file != string.Empty)
        {
            Recommender.LoadModel(recommender_validate, load_model_file + "-validate");
            Recommender.LoadModel(recommender_final, load_model_file + "-final");
        }

        Console.Write(recommender_validate.ToString());

        DoTrack2();
    }