public void TestRegression()
        {
            FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-r.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();
            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);
            while (csv.Next())
            {
                double diff = Math.Abs(csv.GetDouble(2) - csv.GetDouble(4));
                Assert.IsTrue(diff < 1.5);
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
Exemple #2
0
        /// <summary>
        /// Convert a CSV file to binary.
        /// </summary>
        /// <param name="csvFile">The CSV file to convert.</param>
        /// <param name="format">The format.</param>
        /// <param name="binFile">The binary file.</param>
        /// <param name="input">The input.</param>
        /// <param name="ideal">The ideal.</param>
        /// <param name="headers">True, if headers are present.</param>
        public static void ConvertCSV2Binary(FileInfo csvFile, CSVFormat format,
                                             FileInfo binFile, int[] input, int[] ideal, bool headers)
        {
            binFile.Delete();
            var csv = new ReadCSV(csvFile.ToString(), headers, format);

            var buffer = new BufferedMLDataSet(binFile.ToString());

            buffer.BeginLoad(input.Length, ideal.Length);
            while (csv.Next())
            {
                var inputData = new BasicMLData(input.Length);
                var idealData = new BasicMLData(ideal.Length);

                // handle input data
                for (int i = 0; i < input.Length; i++)
                {
                    inputData[i] = csv.GetDouble(input[i]);
                }

                // handle input data
                for (int i = 0; i < ideal.Length; i++)
                {
                    idealData[i] = csv.GetDouble(ideal[i]);
                }

                // add to dataset

                buffer.Add(inputData, idealData);
            }
            buffer.EndLoad();
            buffer.Close();
            csv.Close();
        }
        /// <summary>
        /// Load a CSV file into a memory dataset.
        /// </summary>
        ///
        /// <param name="format">The CSV format to use.</param>
        /// <param name="filename">The filename to load.</param>
        /// <param name="headers">True if there is a header line.</param>
        /// <param name="inputSize">The input size.  Input always comes first in a file.</param>
        /// <param name="idealSize">The ideal size, 0 for unsupervised.</param>
        /// <returns>A NeuralDataSet that holds the contents of the CSV file.</returns>
        public static IMLDataSet LoadCSVTOMemory(CSVFormat format, String filename,
                                                 bool headers, int inputSize, int idealSize)
        {
            var result = new BasicMLDataSet();
            var csv    = new ReadCSV(filename, headers, format);

            while (csv.Next())
            {
                BasicMLData ideal = null;
                int         index = 0;

                var input = new BasicMLData(inputSize);
                for (int i = 0; i < inputSize; i++)
                {
                    double d = csv.GetDouble(index++);
                    input[i] = d;
                }

                if (idealSize > 0)
                {
                    ideal = new BasicMLData(idealSize);
                    for (int i = 0; i < idealSize; i++)
                    {
                        double d = csv.GetDouble(index++);
                        ideal[i] = d;
                    }
                }

                IMLDataPair pair = new BasicMLDataPair(input, ideal);
                result.Add(pair);
            }

            return(result);
        }
        public void TestRegression()
        {
            FileInfo rawFile    = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile    = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-r.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();

            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);

            while (csv.Next())
            {
                double diff = Math.Abs(csv.GetDouble(2) - csv.GetDouble(4));
                Assert.IsTrue(diff < 1.5);
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
Exemple #5
0
        /// <inheritdoc/>
        public bool Read(double[] input, double[] ideal, ref double significance)
        {
            if (_readCSV.Next())
            {
                int index = 0;
                for (int i = 0; i < input.Length; i++)
                {
                    input[i] = _readCSV.GetDouble(index++);
                }

                for (int i = 0; i < ideal.Length; i++)
                {
                    ideal[i] = _readCSV.GetDouble(index++);
                }

                if (_significance)
                {
                    significance = _readCSV.GetDouble(index++);
                }
                else
                {
                    significance = 1;
                }
                return(true);
            }
            return(false);
        }
Exemple #6
0
        public void LoadCSVFileTestClass()
        {
            var path    = parameters.TestFile;
            var csvRead = new ReadCSV(new FileStream(path, FileMode.Open), true, CSVFormat.DecimalPoint);
            var values  = new List <double[]>();

            while (csvRead.Next())
            {
                values.Add(new double[2] {
                    csvRead.GetDouble(0), csvRead.GetDouble(1)
                });
            }

            csvRead.Close();

            for (int i = 0; i < values.Count; i++)
            {
                for (int argc = 0; argc < values[i].Length; argc++)
                {
                    values[i][argc] = ArgNormalize[argc].Normalize(values[i][argc]);
                }
            }
            //Normalization(values);
            testSet = values.ToArray();
        }
Exemple #7
0
        public void LoadCSVFileTrainingClass()
        {
            var path    = parameters.TrainFile;
            var csvRead = new ReadCSV(new FileStream(path, FileMode.Open), true, CSVFormat.DecimalPoint);
            var values  = new List <double[]>();
            var classes = new List <double[]>();

            while (csvRead.Next())
            {
                values.Add(new double[2] {
                    csvRead.GetDouble(0), csvRead.GetDouble(1)
                });
                classes.Add(new double[1] {
                    csvRead.GetDouble(2)
                });
            }
            csvRead.Close();

            var min = parameters.FunctionType == FunctionTypeEnum.Unipolar ? 0d : -1d;

            ArgNormalize = new NormalizedField[2] {
                new NormalizedField(NormalizationAction.Normalize, "X", values.Max(v => v[0]), values.Min(v => v[0]), 1.0, min),
                new NormalizedField(NormalizationAction.Normalize, "Y", values.Max(v => v[1]), values.Min(v => v[1]), 1.0, min)
            };
            for (int i = 0; i < values.Count; i++)
            {
                for (int argc = 0; argc < values[i].Length; argc++)
                {
                    values[i][argc] = ArgNormalize[argc].Normalize(values[i][argc]);
                }
            }
            //Normalization(values);

            classCount = classes.Select(c => c[0]).Distinct().Count();
            var normalizeClasses = new List <double[]>();

            for (int i = 0; i < classes.Count; ++i)
            {
                var newClasses = new double[classCount];
                for (int j = 0; j < newClasses.Length; j++)
                {
                    newClasses[j] = min;
                }
                newClasses[(int)classes[i][0] - 1] = 1;// dodoac normalizacje na -1
                normalizeClasses.Add(newClasses);
            }

            var trainSetCount = (int)((double)values.Count * ((100.0 - 15) / 100));

            values.Shuffle();
            normalizeClasses.Shuffle();
            MyExtensions.ResetStableShuffle();

            TrainSet = new BasicNeuralDataSet(values.Take(trainSetCount).ToArray(),
                                              normalizeClasses.Take(trainSetCount).ToArray());
            ValidationSet = new BasicNeuralDataSet(values.Skip(trainSetCount).ToArray(),
                                                   normalizeClasses.Skip(trainSetCount).ToArray());
        }
        public ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IList <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            try
            {
                //We got a file, lets load it.
                ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                ReadCSV csv = new ReadCSV(File, true, CSVFormat.English);
                csv.DateFormat = "yyyy.MM.dd HH:mm:ss";

                DateTime ParsedDate = from;


                //  Time,Open,High,Low,Close,Volume
                while (csv.Next() && ParsedDate >= from && ParsedDate <= to)
                {
                    DateTime         date       = csv.GetDate("Time");
                    double           Bid        = csv.GetDouble("Bid");
                    double           Ask        = csv.GetDouble("Ask");
                    double           AskVolume  = csv.GetDouble("AskVolume");
                    double           BidVolume  = csv.GetDouble("BidVolume");
                    double           _trade     = (Bid + Ask) / 2;
                    double           _tradeSize = (AskVolume + BidVolume) / 2;
                    LoadedMarketData data       = new LoadedMarketData(date, symbol);
                    data.SetData(MarketDataType.Trade, _trade);
                    data.SetData(MarketDataType.Volume, _tradeSize);
                    result.Add(data);

                    Console.WriteLine("Current DateTime:" + ParsedDate.ToShortDateString() + " Time:" + ParsedDate.ToShortTimeString() + "  Start date was " + from.ToShortDateString());
                    Console.WriteLine("Stopping at date:" + to.ToShortDateString());
                    ParsedDate = date;
                    //double open = csv.GetDouble("Open");
                    //double close = csv.GetDouble("High");
                    //double high = csv.GetDouble("Low");
                    //double low = csv.GetDouble("Close");
                    //double volume = csv.GetDouble("Volume");
                    //LoadedMarketData data = new LoadedMarketData(date, symbol);
                    //data.SetData(MarketDataType.Open, open);
                    //data.SetData(MarketDataType.High, high);
                    //data.SetData(MarketDataType.Low, low);
                    //data.SetData(MarketDataType.Close, close);
                    //data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                return(result);
            }

            catch (Exception ex)
            {
                Console.WriteLine("Something went wrong reading the csv");
                Console.WriteLine("Something went wrong reading the csv:" + ex.Message);
            }

            Console.WriteLine("Something went wrong reading the csv");
            return(null);
        }
Exemple #9
0
        /// <summary>
        /// Reads the CSV and call loader.
        /// Used internally to load the csv and place data in the marketdataset.
        /// </summary>
        /// <param name="symbol">The symbol.</param>
        /// <param name="neededTypes">The needed types.</param>
        /// <param name="from">From.</param>
        /// <param name="to">To.</param>
        /// <param name="File">The file.</param>
        /// <returns></returns>
        ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IEnumerable <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            //We got a file, lets load it.

            ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
            ReadCSV csv = new ReadCSV(File, true, CSVFormat.English);

            //In case we want to use a different date format...and have used the SetDateFormat method, our DateFormat must then not be null..
            //We will use the ?? operator to check for nullables.
            csv.DateFormat = DateFormat ?? "yyyy-MM-dd HH:mm:ss";
            csv.TimeFormat = "HH:mm:ss";

            DateTime ParsedDate = from;
            bool     writeonce  = true;

            while (csv.Next())
            {
                DateTime date = csv.GetDate(0);
                ParsedDate = date;

                if (writeonce)
                {
                    Console.WriteLine(@"First parsed date in csv:" + ParsedDate.ToShortDateString());
                    Console.WriteLine(@"Stopping at date:" + to.ToShortDateString());
                    Console.WriteLine(@"Current DateTime:" + ParsedDate.ToShortDateString() + @" Time:" +
                                      ParsedDate.ToShortTimeString() + @"  Asked Start date was " +
                                      from.ToShortDateString());
                    writeonce = false;
                }
                if (ParsedDate >= from && ParsedDate <= to)
                {
                    DateTime         datex            = csv.GetDate(0);
                    double           open             = csv.GetDouble(1);
                    double           close            = csv.GetDouble(2);
                    double           high             = csv.GetDouble(3);
                    double           low              = csv.GetDouble(4);
                    double           volume           = csv.GetDouble(5);
                    double           range            = Math.Abs(open - close);
                    double           HighLowRange     = Math.Abs(high - low);
                    double           DirectionalRange = close - open;
                    LoadedMarketData data             = new LoadedMarketData(datex, symbol);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.Volume, volume);
                    data.SetData(MarketDataType.RangeHighLow, Math.Round(HighLowRange, 6));
                    data.SetData(MarketDataType.RangeOpenClose, Math.Round(range, 6));
                    data.SetData(MarketDataType.RangeOpenCloseNonAbsolute, Math.Round(DirectionalRange, 6));
                    result.Add(data);
                }
            }

            csv.Close();
            return(result);
        }
Exemple #10
0
        public ICollection <LoadedMarketData> Load(
            TickerSymbol ticker,
            IList <MarketDataType> dataNeeded,
            DateTime from,
            DateTime to)
        {
            // TODO: nyyyyyyyaaagh!

            ICollection <LoadedMarketData> result =
                new List <LoadedMarketData>();
            Uri             url      = BuildURL(ticker, from, to);
            WebRequest      http     = HttpWebRequest.Create(url);
            HttpWebResponse response = http.GetResponse() as HttpWebResponse;

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv = new ReadCSV(
                    istream,
                    true,
                    CSVFormat.DECIMAL_POINT
                    );

                while (csv.Next())
                {
                    // todo: edit headers to match
                    DateTime date = csv.GetDate("DATE");
                    date =
                        date.Add(
                            new TimeSpan(
                                csv.GetDate("TIME").Hour,
                                csv.GetDate("TIME").Minute,
                                csv.GetDate("TIME").Second
                                )
                            );
                    double open   = csv.GetDouble("OPEN");
                    double high   = csv.GetDouble("MIN");
                    double low    = csv.GetDouble("MAX");
                    double close  = csv.GetDouble("CLOSE");
                    double volume = csv.GetDouble("VOLUME");

                    LoadedMarketData data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return(result);
        }
Exemple #11
0
        /// <summary>
        /// Called internally to obtain the current value for an input field.
        /// </summary>
        /// <param name="field">The input field to determine.</param>
        /// <param name="index">The current index.</param>
        /// <returns>The value for this input field.</returns>
        private void DetermineInputFieldValue(IInputField field, int index)
        {
            double result;

            if (field is InputFieldCSV)
            {
                var     fieldCSV = (InputFieldCSV)field;
                ReadCSV csv      = _csvMap[field];
                result = csv.GetDouble(fieldCSV.Offset);
            }
            else if (field is InputFieldMLDataSet)
            {
                var mlField = (InputFieldMLDataSet)field;
                MLDataFieldHolder holder = _dataSetFieldMap
                                           [field];
                IMLDataPair pair   = holder.Pair;
                int         offset = mlField.Offset;
                if (offset < pair.Input.Count)
                {
                    result = pair.Input[offset];
                }
                else
                {
                    offset -= pair.Input.Count;
                    result  = pair.Ideal[offset];
                }
            }
            else
            {
                result = field.GetValue(index);
            }

            field.CurrentValue = result;
            return;
        }
Exemple #12
0
        public void EvaluateNetwork()
        {
            BasicNetwork      network = LoadNetwork();
            DataNormalization norm    = LoadNormalization();

            var csv     = new ReadCSV(_config.EvaluateFile.ToString(), false, ',');
            var input   = new double[norm.InputFields.Count];
            var eqField = (OutputEquilateral)norm.FindOutputField(
                typeof(OutputEquilateral), 0);

            int correct = 0;
            int total   = 0;

            while (csv.Next())
            {
                total++;
                for (int i = 0; i < input.Length; i++)
                {
                    input[i] = csv.GetDouble(i);
                }
                IMLData inputData       = norm.BuildForNetworkInput(input);
                IMLData output          = network.Compute(inputData);
                int     coverTypeActual = DetermineTreeType(eqField, output);
                int     coverTypeIdeal  = (int)csv.GetDouble(54) - 1;

                KeepScore(coverTypeActual, coverTypeIdeal);

                if (coverTypeActual == coverTypeIdeal)
                {
                    correct++;
                }
            }

            Console.WriteLine(@"Total cases:" + total);
            Console.WriteLine(@"Correct cases:" + correct);
            double percent = correct / (double)total;

            Console.WriteLine(@"Correct percent:"
                              + Format.FormatPercentWhole(percent));
            for (int i = 0; i < 7; i++)
            {
                double p = (_treeCorrect[i] / (double)_treeCount[i]);
                Console.WriteLine(@"Tree Type #" + i + @" - Correct/total: "
                                  + _treeCorrect[i] + @"/" + _treeCount[i] + @"("
                                  + Format.FormatPercentWhole(p) + @")");
            }
        }
Exemple #13
0
        /// <summary>
        /// Process the individual training file.
        /// </summary>
        /// <param name="file">The training file to process.</param>
        /// <param name="output">The data set to output to.</param>
        protected void ProcessFile(string file, BufferedMLDataSet output)
        {
            var inputData = new BasicMLData(output.InputSize);
            var idealData = new BasicMLData(output.IdealSize);

            var csv = new ReadCSV(file, true, CSVFormat.English);

            while (csv.Next())
            {
                var    a     = new double[Config.InputWindow + 1];
                double close = csv.GetDouble(1);

                const int fastIndex = 2;
                const int slowIndex = fastIndex + Config.InputWindow;

                a[0] = close;
                for (int i = 0; i < 3; i++)
                {
                    double fast = csv.GetDouble(fastIndex + i);
                    double slow = csv.GetDouble(slowIndex + i);
                    double diff = _fieldDifference.Normalize((fast - slow) / Config.PipSize);
                    a[i + 1] = diff;
                }
                _window.Add(a);

                if (_window.IsFull())
                {
                    double max = (_window.CalculateMax(0, Config.InputWindow) - close) / Config.PipSize;
                    double min = (_window.CalculateMin(0, Config.InputWindow) - close) / Config.PipSize;

                    double o = Math.Abs(max) > Math.Abs(min) ? max : min;

                    a = _window.GetLast();
                    for (int i = 0; i < 3; i++)
                    {
                        inputData[i] = a[i + 1];
                    }

                    o            = _fieldOutcome.Normalize(o);
                    idealData[0] = o;

                    output.Add(inputData, idealData);
                }
            }
        }
Exemple #14
0
        /// <summary>
        /// Load financial data from Google.
        /// </summary>
        /// <param name="ticker">The ticker to load from.</param>
        /// <param name="dataNeeded">The data needed.</param>
        /// <param name="from">The starting time.</param>
        /// <param name="to">The ending time.</param>
        /// <returns>The loaded data.</returns>
        public ICollection <LoadedMarketData> Load(TickerSymbol ticker, IList <MarketDataType> dataNeeded, DateTime from,
                                                   DateTime to)
        {
            ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
            Uri        url      = BuildUrl(ticker, from, to);
            WebRequest http     = WebRequest.Create(url);
            var        response = (HttpWebResponse)http.GetResponse();

            if (response != null)
            {
                using (Stream istream = response.GetResponseStream())
                {
                    var csv = new ReadCSV(istream, true, CSVFormat.DecimalPoint);

                    while (csv.Next())
                    {
                        DateTime date = csv.GetDate("date");

                        double open   = csv.GetDouble("open");
                        double close  = csv.GetDouble("close");
                        double high   = csv.GetDouble("high");
                        double low    = csv.GetDouble("low");
                        double volume = csv.GetDouble("volume");

                        var data =
                            new LoadedMarketData(date, ticker);

                        data.SetData(MarketDataType.Open, open);
                        data.SetData(MarketDataType.Close, close);
                        data.SetData(MarketDataType.High, high);
                        data.SetData(MarketDataType.Low, low);
                        data.SetData(MarketDataType.Open, open);
                        data.SetData(MarketDataType.Volume, volume);
                        result.Add(data);
                    }

                    csv.Close();
                    if (istream != null)
                    {
                        istream.Close();
                    }
                }
            }
            return(result);
        }
        public ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IList <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            try
            {
                //We got a file, lets load it.



                ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                ReadCSV csv = new ReadCSV(File, true, LoadedFormat);


                csv.DateFormat = DateTimeFormat.Normalize();
                //  Time,Open,High,Low,Close,Volume
                while (csv.Next())
                {
                    DateTime         date   = csv.GetDate("Time");
                    double           open   = csv.GetDouble("Open");
                    double           close  = csv.GetDouble("High");
                    double           high   = csv.GetDouble("Low");
                    double           low    = csv.GetDouble("Close");
                    double           volume = csv.GetDouble("Volume");
                    LoadedMarketData data   = new LoadedMarketData(date, symbol);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                return(result);
            }

            catch (Exception ex)
            {
                Console.WriteLine("Something went wrong reading the csv");
                Console.WriteLine("Something went wrong reading the csv:" + ex.Message);
            }

            Console.WriteLine("Something went wrong reading the csv");
            return(null);
        }
Exemple #16
0
        public void LoadCSVFileTrainingRegg()
        {
            var path    = parameters.TrainFile;
            var csvRead = new ReadCSV(new FileStream(path, FileMode.Open), true, CSVFormat.DecimalPoint);
            var valuesX = new List <double[]>();
            var valuesY = new List <double[]>();

            while (csvRead.Next())
            {
                valuesX.Add(new double[1] {
                    csvRead.GetDouble(0)
                });
                valuesY.Add(new double[1] {
                    csvRead.GetDouble(1)
                });
            }
            csvRead.Close();

            var min = parameters.FunctionType == FunctionTypeEnum.Unipolar ? 0d : -1d;

            ArgNormalize = new NormalizedField[] { new NormalizedField(NormalizationAction.Normalize, "X", valuesX.Max(v => v[0]), valuesX.Min(v => v[0]), 1.0, min) };
            YNormalize   = new NormalizedField(NormalizationAction.Normalize, "Y", valuesY.Max(v => v[0]), valuesY.Min(v => v[0]), 1.0, min);
            for (int i = 0; i < valuesX.Count; i++)
            {
                valuesX[i][0] = ArgNormalize[0].Normalize(valuesX[i][0]);
                valuesY[i][0] = YNormalize.Normalize(valuesY[i][0]);
            }
            //if(parameters.FunctionType==FunctionTypeEnum.Bipolar)
            //        ansMeans = means[0];
            //ansfactor = factor[0];

            //ansMIn = Min[0];
            var trainSetCount = (int)((double)valuesX.Count * ((100.0 - 15) / 100));

            valuesX.Shuffle();
            valuesY.Shuffle();
            MyExtensions.ResetStableShuffle();

            TrainSet = new BasicNeuralDataSet(valuesX.Take(trainSetCount).ToArray(),
                                              valuesY.Take(trainSetCount).ToArray());
            ValidationSet = new BasicNeuralDataSet(valuesX.Skip(trainSetCount).ToArray(),
                                                   valuesY.Skip(trainSetCount).ToArray());
        }
Exemple #17
0
        private static double[] ReadLine(ReadCSV csv)
        {
            var line = new double[csv.GetCount()];

            for (int i = 0; i < csv.GetCount(); i++)
            {
                line[i] = csv.GetDouble(i);
            }
            return(line);
        }
        /// <summary>
        /// parses one column of a csv and returns an array of doubles.
        /// you can only return one double array with this method.
        /// </summary>
        /// <param name="file">The file.</param>
        /// <param name="formatused">The formatused.</param>
        /// <param name="Name">The name of the column to parse..</param>
        /// <returns></returns>
        public static List <double> QuickParseCSV(string file, CSVFormat formatused, string Name)
        {
            List <double> returnedArrays = new List <double>();
            ReadCSV       csv            = new ReadCSV(file, true, formatused);

            while (csv.Next())
            {
                returnedArrays.Add(csv.GetDouble(Name));
            }
            return(returnedArrays);
        }
Exemple #19
0
        /// <summary>
        /// Load financial data from a CSV file.
        /// </summary>
        /// <param name="ticker">The ticker being loaded, ignored for a CSV load.</param>
        /// <param name="dataNeeded">The data needed.</param>
        /// <param name="from">The starting date.</param>
        /// <param name="to">The ending date.</param>
        /// <returns></returns>
        public ICollection <LoadedMarketData> Load(TickerSymbol ticker, IList <MarketDataType> dataNeeded, DateTime from,
                                                   DateTime to)
        {
            try
            {
                if (File.Exists(TheFile))
                {
                    //We got a file, lets load it.
                    TheFile = TheFile;
                    ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                    var csv = new ReadCSV(TheFile, true, CSVFormat.English);

                    //  Time,Open,High,Low,Close,Volume
                    while (csv.Next())
                    {
                        DateTime date   = csv.GetDate("Time");
                        double   open   = csv.GetDouble("Open");
                        double   close  = csv.GetDouble("High");
                        double   high   = csv.GetDouble("Low");
                        double   low    = csv.GetDouble("Close");
                        double   volume = csv.GetDouble("Volume");
                        var      data   = new LoadedMarketData(date, ticker);
                        data.SetData(MarketDataType.Open, open);
                        data.SetData(MarketDataType.Volume, close);
                        data.SetData(MarketDataType.High, high);
                        data.SetData(MarketDataType.Low, low);
                        data.SetData(MarketDataType.Volume, volume);
                        result.Add(data);
                    }

                    csv.Close();
                    return(result);
                }
            }
            catch (Exception ex)
            {
                throw new LoaderError(ex);
            }

            throw new LoaderError(@"Something went wrong reading the csv");
        }
        /// <summary>
        /// Read one record of data from a CSV file.
        /// </summary>
        /// <param name="input">The input data array.</param>
        /// <param name="ideal">The ideal data array.</param>
        /// <returns>True, if there is more data to be read.</returns>
        public bool Read(double[] input, double[] ideal)
        {
            if (this.readCSV.Next())
            {
                int index = 0;
                for (int i = 0; i < input.Length; i++)
                {
                    input[i] = readCSV.GetDouble(index++);
                }

                for (int i = 0; i < ideal.Length; i++)
                {
                    ideal[i] = readCSV.GetDouble(index++);
                }
                return(true);
            }
            else
            {
                return(false);
            }
        }
        /// <summary>
        /// parses one column of a csv and returns an array of doubles.
        /// you can only return one double array with this method.
        /// We are assuming CSVFormat english in this quick parse csv method.
        /// You can input the size (number of lines) to read.
        /// </summary>
        /// <param name="file">The file.</param>
        /// <param name="Name">The name of the column to parse.</param>
        /// <param name="size">The size.</param>
        /// <returns></returns>
        public static List <double> QuickParseCSV(string file, string Name, int size)
        {
            List <double> returnedArrays = new List <double>();
            ReadCSV       csv            = new ReadCSV(file, true, CSVFormat.English);
            int           currentRead    = 0;

            while (csv.Next() && currentRead < size)
            {
                returnedArrays.Add(csv.GetDouble(Name));
                currentRead++;
            }
            return(returnedArrays);
        }
Exemple #22
0
        /// <summary>
        /// Used to calibrate the training file.
        /// </summary>
        /// <param name="file">The file to consider.</param>
        protected void CalibrateFile(string file)
        {
            var csv = new ReadCSV(file, true, CSVFormat.English);

            while (csv.Next())
            {
                var    a     = new double[1];
                double close = csv.GetDouble(1);

                const int fastIndex = 2;
                const int slowIndex = fastIndex + Config.InputWindow;
                a[0] = close;
                for (int i = 0; i < Config.InputWindow; i++)
                {
                    double fast = csv.GetDouble(fastIndex + i);
                    double slow = csv.GetDouble(slowIndex + i);

                    if (!double.IsNaN(fast) && !double.IsNaN(slow))
                    {
                        double diff = (fast - slow) / Config.PipSize;
                        _minDifference = Math.Min(_minDifference, diff);
                        _maxDifference = Math.Max(_maxDifference, diff);
                    }
                }
                _window.Add(a);

                if (_window.IsFull())
                {
                    double max = (_window.CalculateMax(0, Config.InputWindow) - close) / Config.PipSize;
                    double min = (_window.CalculateMin(0, Config.InputWindow) - close) / Config.PipSize;

                    double o = Math.Abs(max) > Math.Abs(min) ? max : min;

                    _maxPiPs = Math.Max(_maxPiPs, (int)o);
                    _minPiPs = Math.Min(_minPiPs, (int)o);
                }
            }
        }
        public void loadPrime(String primeFilename)
        {
            ReadCSV csv = new ReadCSV(primeFilename);

            while (csv.Next())
            {
                DateTime     date = csv.GetDate("date");
                double       rate = csv.GetDouble("prime");
                InterestRate ir   = new InterestRate(date, rate);
                this.rates.Add(ir);
            }

            csv.Close();
            this.rates.Sort();
        }
Exemple #24
0
        public void loadPrime(String primeFilename)
        {
            var csv = new ReadCSV(primeFilename, true, CSVFormat.English);

            while (csv.Next())
            {
                var    date = csv.GetDate("date");
                double rate = csv.GetDouble("prime");
                var    ir   = new InterestRate(date, rate);
                rates.Add(ir);
            }

            csv.Close();
            rates.Sort();
        }
        public void loadSP500(String sp500Filename)
        {
            ReadCSV csv = new ReadCSV(sp500Filename);

            while (csv.Next())
            {
                DateTime        date   = csv.GetDate("date");
                double          amount = csv.GetDouble("adj close");
                FinancialSample sample = new FinancialSample();
                sample.setAmount(amount);
                sample.setDate(date);
                this.samples.Add(sample);
            }
            csv.Close();
            this.samples.Sort();
        }
Exemple #26
0
        public void loadSP500(String sp500Filename)
        {
            var csv = new ReadCSV(sp500Filename, true, CSVFormat.English);

            while (csv.Next())
            {
                var    date   = csv.GetDate("date");
                double amount = csv.GetDouble("adj close");
                var    sample = new FinancialSample();
                sample.setAmount(amount);
                sample.setDate(date);
                samples.Add(sample);
            }
            csv.Close();
            samples.Sort();
        }
Exemple #27
0
        /// <summary>
        ///     Load financial data.
        /// </summary>
        /// <param name="ticker">The ticker symbol.</param>
        /// <param name="output">The output file.</param>
        /// <param name="outputFormat">The output format.</param>
        /// <param name="from">Starting date.</param>
        /// <param name="to">Ending date.</param>
        public void LoadAllData(String ticker, String output, CSVFormat outputFormat, DateTime from,
                                DateTime to)
        {
            try
            {
                Uri        urlData      = BuildURL(ticker, from, to);
                WebRequest httpData     = WebRequest.Create(urlData);
                var        responseData = (HttpWebResponse)httpData.GetResponse();

                if (responseData != null)
                {
                    Stream istreamData = responseData.GetResponseStream();
                    var    csvData     = new ReadCSV(istreamData, true, CSVFormat.English);

                    TextWriter tw = new StreamWriter(output);
                    tw.WriteLine("date,time,open price,high price,low price,close price,volume,adjusted price");

                    while (csvData.Next())
                    {
                        DateTime date          = csvData.GetDate("date");
                        double   adjustedClose = csvData.GetDouble("adj close");
                        double   open          = csvData.GetDouble("open");
                        double   close         = csvData.GetDouble("close");
                        double   high          = csvData.GetDouble("high");
                        double   low           = csvData.GetDouble("low");
                        var      volume        = (long)csvData.GetDouble("volume");

                        var line = new StringBuilder();
                        line.Append(NumericDateUtil.DateTime2Long(date));
                        line.Append(outputFormat.Separator);
                        line.Append(NumericDateUtil.Time2Int(date));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(open, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(high, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(low, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(close, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(volume);
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(adjustedClose, Precision));
                        tw.WriteLine(line.ToString());
                    }

                    tw.Close();
                }
            }
            catch (WebException ex)
            {
                throw new QuantError(ex);
            }
        }
        /// <summary>
        /// parses one column of a csv and returns an array of doubles.
        /// you can only return one double array with this method.
        /// We are assuming CSVFormat english in this quick parse csv method.
        /// You can input the size (number of lines) to read , and the number of lines you want to skip start from the first line.
        /// </summary>
        /// <param name="file">The file.</param>
        /// <param name="columnNumber">The column number to get.</param>
        /// <param name="size">The size.</param>
        /// <param name="startLine">The start line (how many lines you want to skip from the first line.</param>
        /// <returns></returns>
        public static List <double> QuickParseCSV(string file, int columnNumber, int size, int startLine)
        {
            List <double> returnedArrays = new List <double>();
            ReadCSV       csv            = new ReadCSV(file, true, CSVFormat.English);
            int           currentRead    = 0;
            int           currentLine    = 0;

            while (csv.Next())
            {
                if (currentRead < size && currentLine > startLine)
                {
                    returnedArrays.Add(csv.GetDouble(columnNumber));
                    currentRead++;
                }
                currentLine++;
            }
            return(returnedArrays);
        }
Exemple #29
0
        /// <summary>
        /// Loads the specified financial data.
        /// </summary>
        /// <param name="ticker">The currency pair to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent
        /// the data loaded.</returns>
        public ICollection <LoadedMarketData> Load(
            TickerSymbol ticker,
            IList <MarketDataType> dataNeeded,
            DateTime from,
            DateTime to
            )
        {
            ICollection <LoadedMarketData> result =
                new List <LoadedMarketData>();
            Uri             url      = buildURL(ticker, from, to);
            WebRequest      http     = HttpWebRequest.Create(url);
            HttpWebResponse response = http.GetResponse() as HttpWebResponse;

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv =
                    new ReadCSV(istream, true, CSVFormat.DECIMAL_POINT);
                while (csv.Next())
                {
                    // TODO: check these values if possible
                    DateTime date     = csv.GetDate("date");
                    double   adjClose = csv.GetDouble("adj close"); // TODO: deprecate?
                    double   open     = csv.GetDouble("open");
                    double   close    = csv.GetDouble("close");
                    double   high     = csv.GetDouble("high");
                    double   low      = csv.GetDouble("low");
                    double   volume   = csv.GetDouble("volume"); // TODO: deprecate?

                    LoadedMarketData data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.ADJUSTED_CLOSE, adjClose);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return(result);
        }
Exemple #30
0
        /// <summary>
        /// Called internally to obtain the current value for an input field.
        /// </summary>
        /// <param name="field">The input field to determine.</param>
        /// <param name="index">The current index.</param>
        /// <returns>The value for this input field.</returns>
        private double DetermineInputFieldValue(IInputField field,
                                                int index)
        {
            double result = 0;

            if (field is InputFieldCSV)
            {
                InputFieldCSV fieldCSV = (InputFieldCSV)field;
                ReadCSV       csv      = this.csvMap[field];
                result = csv.GetDouble(fieldCSV.Offset);
            }
            else if (field is InputFieldNeuralDataSet)
            {
                InputFieldNeuralDataSet neuralField = (InputFieldNeuralDataSet)field;
                NeuralDataFieldHolder   holder      = this.dataSetFieldMap
                                                      [field];
                INeuralDataPair pair   = holder.Pair;
                int             offset = neuralField.Offset;
                if (offset < pair.Input.Count)
                {
                    result = pair.Input[offset];
                }
                else
                {
                    offset -= pair.Input.Count;
                    result  = pair.Ideal[offset];
                }
            }
            else
            {
                result = field.GetValue(index);
            }

            field.CurrentValue = result;
            return(result);
        }
Exemple #31
0
        /// <summary>
        /// Load the specified financial data. 
        /// </summary>
        /// <param name="ticker">The ticker symbol to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent the data
        /// loaded.</returns>
        public ICollection<LoadedMarketData> Load(TickerSymbol ticker,
                                                  IList<MarketDataType> dataNeeded, DateTime from,
                                                  DateTime to)
        {
            ICollection<LoadedMarketData> result =
                new List<LoadedMarketData>();
            Uri url = BuildURL(ticker, from, to);
            WebRequest http = WebRequest.Create(url);
            var response = (HttpWebResponse) http.GetResponse();

            using (Stream istream = response.GetResponseStream())
            {
                var csv = new ReadCSV(istream, true, CSVFormat.DecimalPoint);

                while (csv.Next())
                {
                    DateTime date = csv.GetDate("date");
                    double adjClose = csv.GetDouble("adj close");
                    double open = csv.GetDouble("open");
                    double close = csv.GetDouble("close");
                    double high = csv.GetDouble("high");
                    double low = csv.GetDouble("low");
                    double volume = csv.GetDouble("volume");

                    var data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.AdjustedClose, adjClose);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;
        }
        /// <summary>
        /// Load financial data.
        /// </summary>
        /// <param name="ticker">The ticker symbol.</param>
        /// <param name="output">The output file.</param>
        /// <param name="outputFormat">The output format.</param>
        /// <param name="from">Starting date.</param>
        /// <param name="to">Ending date.</param>
        public void LoadAllData(String ticker, String output, CSVFormat outputFormat, DateTime from,
            DateTime to)
        {
            try
            {
                Uri urlData = BuildURL(ticker, from, to);
                WebRequest httpData = WebRequest.Create(urlData);
                var responseData = (HttpWebResponse) httpData.GetResponse();

                if (responseData != null)
                {
                    Stream istreamData = responseData.GetResponseStream();
                    var csvData = new ReadCSV(istreamData, true, CSVFormat.English);

                    TextWriter tw = new StreamWriter(output);
                    tw.WriteLine("date,time,open price,high price,low price,close price,volume,adjusted price");

                    while (csvData.Next())
                    {
                        DateTime date = csvData.GetDate("date");
                        double adjustedClose = csvData.GetDouble("adj close");
                        double open = csvData.GetDouble("open");
                        double close = csvData.GetDouble("close");
                        double high = csvData.GetDouble("high");
                        double low = csvData.GetDouble("low");
                        var volume = (long) csvData.GetDouble("volume");

                        var line = new StringBuilder();
                        line.Append(NumericDateUtil.DateTime2Long(date));
                        line.Append(outputFormat.Separator);
                        line.Append(NumericDateUtil.Time2Int(date));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(open, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(high, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(low, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(close, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(volume);
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(adjustedClose, Precision));
                        tw.WriteLine(line.ToString());
                    }

                    tw.Close();
                }
            }
            catch (WebException ex)
            {
                throw new QuantError(ex);
            }
        }
        public ICollection<LoadedMarketData> Load(
            TickerSymbol ticker,
            IList<MarketDataType> dataNeeded,
            DateTime from,
            DateTime to)
        {
            // TODO: nyyyyyyyaaagh!

            ICollection<LoadedMarketData> result =
                new List<LoadedMarketData>();
            Uri url = BuildURL(ticker, from, to);
            WebRequest http = HttpWebRequest.Create(url);
            HttpWebResponse response = http.GetResponse() as HttpWebResponse;

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv = new ReadCSV(
                    istream,
                    true,
                    CSVFormat.DECIMAL_POINT
                );

                while (csv.Next())
                {
                    // todo: edit headers to match
                    DateTime date = csv.GetDate("DATE");
                    date =
                        date.Add(
                            new TimeSpan(
                                csv.GetDate("TIME").Hour,
                                csv.GetDate("TIME").Minute,
                                csv.GetDate("TIME").Second
                            )
                        );
                    double open = csv.GetDouble("OPEN");
                    double high = csv.GetDouble("MIN");
                    double low = csv.GetDouble("MAX");
                    double close = csv.GetDouble("CLOSE");
                    double volume = csv.GetDouble("VOLUME");

                    LoadedMarketData data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;
        }
        /// <summary>
        /// Load the specified financial data. 
        /// </summary>
        /// <param name="ticker">The ticker symbol to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent the data
        /// loaded.</returns>
        public ICollection<LoadedMarketData> Load(TickerSymbol ticker,
                 IList<MarketDataType> dataNeeded, DateTime from,
                 DateTime to)
        {

            ICollection<LoadedMarketData> result =
               new List<LoadedMarketData>();
            Uri url = buildURL(ticker, from, to);
            WebRequest http = HttpWebRequest.Create(url);
            HttpWebResponse response = (HttpWebResponse)http.GetResponse();

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv = new ReadCSV(istream, true, CSVFormat.DECIMAL_POINT);

                while (csv.Next())
                {
                    DateTime date = csv.GetDate("date");
                    double adjClose = csv.GetDouble("adj close");
                    double open = csv.GetDouble("open");
                    double close = csv.GetDouble("close");
                    double high = csv.GetDouble("high");
                    double low = csv.GetDouble("low");
                    double volume = csv.GetDouble("volume");

                    LoadedMarketData data =
                       new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.ADJUSTED_CLOSE, adjClose);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;

        }
        public void EvaluateNetwork()
        {
            BasicNetwork network = LoadNetwork();
            DataNormalization norm = LoadNormalization();

            var csv = new ReadCSV(_config.EvaluateFile.ToString(), false, ',');
            var input = new double[norm.InputFields.Count];
            var eqField = (OutputEquilateral) norm.FindOutputField(
                typeof (OutputEquilateral), 0);

            int correct = 0;
            int total = 0;
            while (csv.Next())
            {
                total++;
                for (int i = 0; i < input.Length; i++)
                {
                    input[i] = csv.GetDouble(i);
                }
                IMLData inputData = norm.BuildForNetworkInput(input);
                IMLData output = network.Compute(inputData);
                int coverTypeActual = DetermineTreeType(eqField, output);
                int coverTypeIdeal = (int) csv.GetDouble(54) - 1;

                KeepScore(coverTypeActual, coverTypeIdeal);

                if (coverTypeActual == coverTypeIdeal)
                {
                    correct++;
                }
            }

            Console.WriteLine(@"Total cases:" + total);
            Console.WriteLine(@"Correct cases:" + correct);
            double percent = correct/(double) total;
            Console.WriteLine(@"Correct percent:"
                              + Format.FormatPercentWhole(percent));
            for (int i = 0; i < 7; i++)
            {
                double p = (_treeCorrect[i]/(double) _treeCount[i]);
                Console.WriteLine(@"Tree Type #" + i + @" - Correct/total: "
                                  + _treeCorrect[i] + @"/" + _treeCount[i] + @"("
                                  + Format.FormatPercentWhole(p) + @")");
            }
        }
Exemple #36
0
        /// <summary>
        /// Reads and parses CSV data from file
        /// </summary>
        /// <param name="ticker">Ticker associated with CSV file</param>
        /// <param name="neededTypes">Columns to parse (headers)</param>
        /// <param name="from">DateTime from</param>
        /// <param name="to">DateTime to</param>
        /// <param name="File">Filepath to CSV</param>
        /// <returns>Marketdata</returns>
        public ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol ticker, IList <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            try
            {
                LoadedFile = File;
                Console.WriteLine("Loading instrument: " + ticker.Symbol + " from: " + File);
                //We got a file, lets load it.
                ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                ReadCSV csv = new ReadCSV(File, true, LoadedFormat);
                if (DateTimeDualColumn)
                {
                    csv.DateFormat = DateFormat;
                    csv.TimeFormat = TimeFormat;
                }
                else
                {
                    csv.DateFormat = DateFormat;
                }

                //"Date","Time","Open","High","Low","Close","Volume"
                while (csv.Next())
                {
                    string datetime = "";
                    if (DateTimeDualColumn)
                    {
                        datetime = csv.GetDate("Date").ToShortDateString() + " " +
                                   csv.GetTime("Time").ToShortTimeString();
                    }
                    else
                    {
                        datetime = csv.GetDate("Date").ToShortDateString();
                    }
                    DateTime date = DateTime.Parse(datetime);
                    if (date > from && date < to)
                    {
                        // CSV columns
                        double open   = csv.GetDouble("Open");
                        double high   = csv.GetDouble("High");
                        double low    = csv.GetDouble("Low");
                        double close  = csv.GetDouble("Close");
                        double volume = csv.GetDouble("Volume");

                        LoadedMarketData data = new LoadedMarketData(date, ticker);
                        foreach (MarketDataType marketDataType in neededTypes)
                        {
                            switch (marketDataType.ToString())
                            {
                            case "Open":
                                data.SetData(MarketDataType.Open, open);
                                break;

                            case "High":
                                data.SetData(MarketDataType.High, high);
                                break;

                            case "Low":
                                data.SetData(MarketDataType.Low, low);
                                break;

                            case "Close":
                                data.SetData(MarketDataType.Close, close);
                                break;

                            case "Volume":
                                data.SetData(MarketDataType.Volume, volume);
                                break;

                            case "RangeHighLow":
                                data.SetData(MarketDataType.RangeHighLow, Math.Round(Math.Abs(high - low), 6));
                                break;

                            case "RangeOpenClose":
                                data.SetData(MarketDataType.RangeOpenClose, Math.Round(Math.Abs(close - open), 6));
                                break;

                            case "RangeOpenCloseNonAbsolute":
                                data.SetData(MarketDataType.RangeOpenCloseNonAbsolute, Math.Round(close - open, 6));
                                break;

                            case "Weighted":
                                data.SetData(MarketDataType.Weighted, Math.Round((high + low + 2 * close) / 4, 6));
                                break;
                            }
                        }
                        result.Add(data);
                    }
                }
                csv.Close();
                return(result);
            }

            catch (Exception ex)
            {
                Console.WriteLine("Something went wrong reading the csv: " + ex.Message);
            }
            return(null);
        }
Exemple #37
0
 public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to)
 {
     ICollection<LoadedMarketData> is2 = new List<LoadedMarketData>();
     HttpWebResponse response = (HttpWebResponse) WebRequest.Create(x38c212309d8d5dd3(ticker, from, to)).GetResponse();
     using (Stream stream = response.GetResponseStream())
     {
         DateTime time;
         double num;
         double num2;
         double num3;
         double num4;
         double num5;
         double num6;
         LoadedMarketData data;
         ReadCSV dcsv = new ReadCSV(stream, true, CSVFormat.DecimalPoint);
         goto Label_005B;
     Label_003F:
         data.SetData(MarketDataType.Open, num2);
     Label_0049:
         data.SetData(MarketDataType.Volume, num6);
         is2.Add(data);
     Label_005B:
         if (dcsv.Next())
         {
             goto Label_01AF;
         }
         dcsv.Close();
         stream.Close();
         if ((((uint) num) - ((uint) num5)) <= uint.MaxValue)
         {
             goto Label_0125;
         }
         if ((((uint) num) & 0) == 0)
         {
             goto Label_00B0;
         }
     Label_00A4:
         data.SetData(MarketDataType.Low, num5);
         goto Label_003F;
     Label_00B0:
         data.SetData(MarketDataType.AdjustedClose, num);
         do
         {
             data.SetData(MarketDataType.Open, num2);
             if ((((uint) num) - ((uint) num6)) > uint.MaxValue)
             {
                 goto Label_0049;
             }
             data.SetData(MarketDataType.Close, num3);
             data.SetData(MarketDataType.High, num4);
         }
         while ((((uint) num5) - ((uint) num3)) > uint.MaxValue);
         if (((uint) num2) >= 0)
         {
             goto Label_00A4;
         }
         goto Label_003F;
     Label_0125:
         if (((uint) num2) >= 0)
         {
             return is2;
         }
         goto Label_005B;
     Label_013C:
         num6 = dcsv.GetDouble("volume");
         data = new LoadedMarketData(time, ticker);
         if ((((uint) num2) | 2) == 0)
         {
             goto Label_017C;
         }
         goto Label_00B0;
     Label_016E:
         num2 = dcsv.GetDouble("open");
     Label_017C:
         num3 = dcsv.GetDouble("close");
         num4 = dcsv.GetDouble("high");
         num5 = dcsv.GetDouble("low");
         goto Label_013C;
     Label_01AF:
         time = dcsv.GetDate("date");
         num = dcsv.GetDouble("adj close");
         if ((((uint) num3) + ((uint) num6)) <= uint.MaxValue)
         {
             goto Label_016E;
         }
         goto Label_00B0;
     }
 }