Exemple #1
0
        public void Evolve()
        {
            List <NeuralNetwork> allNewNetworks = new List <NeuralNetwork>();

            List <NeuralNetwork> networkList = networks.Select(kvp => kvp.Value).ToList();

            networkList.Sort((t1, t2) => { return(-fitnesses[t1.GetGuid()].CompareTo(fitnesses[t2.GetGuid()])); });

            List <NeuralNetwork> best10 = networkList.Take((int)(networkList.Count * 0.1)).ToList();

            List <double> fitness = networkList.Select(n => fitnesses[n.GetGuid()]).ToList();

            allNewNetworks.AddRange(networkList.Take(5).Select(n => n));
            double[] mutationParams = mutationFunction(maxFitness);
            allNewNetworks.AddRange(best10.SelectMany(n => n.Mutate(mutationParams[0], mutationParams[1], 4)));

            while (allNewNetworks.Count < networkList.Count * 0.75)
            {
                NeuralNetwork n1 = networkList[RandomValues.RandomInt(0, networkList.Count - 1)];
                NeuralNetwork n2 = networkList[RandomValues.RandomInt(0, networkList.Count - 1)];
                if (n1.WantsSexyTimeWith(n2) && n2.WantsSexyTimeWith(n1))
                {
                    allNewNetworks.Add(n1.DoSexyTimeWith(n2));
                }
            }

            while (allNewNetworks.Count < networkList.Count)
            {
                int[] layers = new int[RandomValues.RandomInt(layerLength.Item1, layerLength.Item2)];
                for (int i = 0; i < layers.Length; i++)
                {
                    layers[i] = RandomValues.RandomInt(layerRange.Item1, layerRange.Item2);
                }
                layers[0] = inputs;
                layers[layers.Length - 1] = outputs;
                NeuralNetwork network = new NeuralNetwork(layers, activationFunction);
                allNewNetworks.Add(network);
            }

            networks.Clear();
            fitnesses.Clear();

            foreach (NeuralNetwork network in allNewNetworks)
            {
                networks.Add(network.GetGuid(), network);
            }

            generation++;
        }
Exemple #2
0
 public void Init()
 {
     for (int pop = 0; pop < netPopulations; pop++)
     {
         int[] layers = new int[RandomValues.RandomInt(layerLength.Item1, layerLength.Item2)];
         for (int i = 0; i < layers.Length; i++)
         {
             layers[i] = RandomValues.RandomInt(layerRange.Item1, layerRange.Item2);
         }
         layers[0] = inputs;
         layers[layers.Length - 1] = outputs;
         for (int net = 0; net < netsPerPopulation; net++)
         {
             NeuralNetwork network = new NeuralNetwork(layers, activationFunction);
             networks.Add(network.Guid, network);
         }
     }
 }