private void SetStartPoints(ref PointCloud points1, ref PointCloud points2, PointCloud pointsInput1, PointCloud pointsInput2) { List <int> randomIndices = RandomUtils.UniqueRandomIndices(3, pointsInput1.Count); points1 = RandomUtils.ExtractPoints(pointsInput1, randomIndices); points2 = RandomUtils.ExtractPoints(pointsInput2, randomIndices); }
public static Matrix4 TryoutPoints(PointCloud pointsTarget, PointCloud pointsSource, ICPSolution res, LandmarkTransform myLandmarkTransform) { res.PointsTarget = RandomUtils.ExtractPoints(pointsTarget, res.RandomIndices); res.PointsSource = RandomUtils.ExtractPoints(pointsSource, res.RandomIndices); //transform: MathUtilsVTK.FindTransformationMatrix(res.PointsSource, res.PointsTarget, myLandmarkTransform);//, accumulate); res.Matrix = myLandmarkTransform.Matrix; return(res.Matrix); }
public static Matrix4d TryoutPoints(List <Vertex> pointsTarget, List <Vertex> pointsSource, ICPSolution res, LandmarkTransform myLandmarkTransform) { res.PointsTarget = RandomUtils.ExtractPoints(pointsTarget, res.RandomIndices); res.PointsSource = RandomUtils.ExtractPoints(pointsSource, res.RandomIndices); //transform: MatrixUtilsNew.FindTransformationMatrix(Vertices.ConvertToVector3dList(res.PointsSource), Vertices.ConvertToVector3dList(res.PointsTarget), myLandmarkTransform);//, accumulate); res.Matrix = myLandmarkTransform.Matrix; return(res.Matrix); }
private bool Helper_ICP_Iteration_SA(List <Vertex> PT, List <Vertex> PS, KDTreeVertex kdTree, int keepOnlyPoints) { try { //first iteration if (solutionList == null) { solutionList = new List <ICPSolution>(); if (NumberOfStartTrialPoints > PS.Count) { NumberOfStartTrialPoints = PS.Count; } if (NumberOfStartTrialPoints == PS.Count) { NumberOfStartTrialPoints = PS.Count * 80 / 100; } if (NumberOfStartTrialPoints < 3) { NumberOfStartTrialPoints = 3; } for (int i = 0; i < MaxNumberSolutions; i++) { ICPSolution myTrial = ICPSolution.SetRandomIndices(NumberOfStartTrialPoints, PS.Count, solutionList); if (myTrial != null) { myTrial.PointsSource = RandomUtils.ExtractPoints(PS, myTrial.RandomIndices); solutionList.Add(myTrial); } } ////test.... ////maxNumberSolutions = 1; //ICPSolution myTrial1 = new ICPSolution(); //for (int i = 0; i < NumberPointsSolution; i++) //{ // myTrial1.RandomIndices.Add(i); //} //myTrial1.PointsSource = RandomUtils.ExtractPoints(PS, myTrial1.RandomIndices); //solutionList[0] = myTrial1; } for (int i = 0; i < solutionList.Count; i++) { List <Vertex> transformedPoints = null; ICPSolution myTrial = solutionList[i]; Helper_ICP_Iteration(ref myTrial.PointsTarget, ref myTrial.PointsSource, PT, PS, kdTree, keepOnlyPoints); myTrial.Matrix = Matrix4d.Mult(myTrial.Matrix, this.Matrix); myTrial.MeanDistanceSubset = this.MeanDistance; myTrial.MeanDistance = TransformPoints(ref transformedPoints, PT, PS, myTrial.Matrix); // solutionList[i] = myTrial; } if (solutionList.Count > 0) { solutionList.Sort(new ICPSolutionComparer()); RemoveSolutionIfMatrixContainsNaN(solutionList); if (solutionList.Count == 0) { System.Windows.Forms.MessageBox.Show("No solution could be found !"); } this.Matrix = solutionList[0].Matrix; this.MeanDistance = solutionList[0].MeanDistance; if (solutionList[0].MeanDistance < this.MaximumMeanDistance) { return(true); } } } catch (Exception err) { MessageBox.Show("Error in Helper_ICP_Iteration_SA: " + err.Message); return(false); } return(false); }
/// <summary> /// a simulated annealing like technique /// </summary> /// <param name="pointsTarget"></param> /// <param name="pointsSource"></param> /// <param name="myNumberPoints"></param> /// <param name="myLandmarkTransform"></param> /// <param name="maxSolutions"></param> /// <returns></returns> private static ICPSolution IterateSA(List <Vertex> pointsTarget, List <Vertex> pointsSource, int myNumberPoints, int maxSolutions) { int i = 0; //int currentIteration = 0; try { if (myNumberPoints > pointsTarget.Count) { myNumberPoints = pointsTarget.Count; } List <ICPSolution> solutionList = new List <ICPSolution>(); for (i = 0; i < maxSolutions; i++) { ICPSolution myTrial = ICPSolution.SetRandomIndices(myNumberPoints, pointsSource.Count, solutionList); //myTrial.PointsTargetTrial = RandomUtils.ExtractPoints(pointsTarget, myTrial.RandomIndices); myTrial.PointsSource = RandomUtils.ExtractPoints(pointsSource, myTrial.RandomIndices); //myTrial.Matrix = TryoutPointsSA(pointsTarget, pointsSource, myTrial, myLandmarkTransform);//, accumulate); myTrial.PointsTransformed = MathUtils.TransformPoints(myTrial.PointsSource, myTrial.Matrix); double totaldist = PointUtils.CalculateTotalDistance(myTrial.PointsTarget, myTrial.PointsTransformed); myTrial.MeanDistance = totaldist / Convert.ToDouble(myTrial.PointsSource.Count); solutionList.Add(myTrial); } if (solutionList.Count > 0) { solutionList.Sort(new ICPSolutionComparer()); RemoveSolutionIfMatrixContainsNaN(solutionList); if (solutionList.Count == 0) { System.Windows.Forms.MessageBox.Show("No start solution could be found !"); } Debug.WriteLine("Solutions found after: " + i.ToString() + " iterations, number of solution " + solutionList.Count.ToString()); if (solutionList.Count > 0) { ICPSolution result = solutionList[0]; //write solution to debug ouput //System.Diagnostics.Debug.WriteLine("Solution of start sequence is: "); DebugWriteUtils.WriteTestOutputVertex("Solution of start sequence", result.Matrix, result.PointsSource, result.PointsTransformed, result.PointsTarget); return(result); } } return(null); } catch (Exception err) { System.Windows.Forms.MessageBox.Show("Error in IterateStartPoints of ICP at: " + i.ToString() + " : " + err.Message); return(null); } }