Exemple #1
0
        /// <summary>
        /// Verifies that a UProve token attribute is not equal to the given attribute value.
        /// </summary>
        /// <param name="verifier">Verifier info about token.</param>
        /// <param name="attributeIndexForVerifier">Target attribute, 1-based index.</param>
        /// <param name="attributeValue">Bad value for attribute.</param>
        /// <returns></returns>
        public bool Verify(
            VerifierPresentationProtocolParameters verifier,
            int attributeIndexForVerifier,
            byte [] attributeValue)
        {
            // Verify UProve Integration Proof
            if (this.UPIProof == null)
            {
                return(false);
            }
            VerifierPresentationProtocolParameters[] verifiers = new VerifierPresentationProtocolParameters[1] {
                verifier
            };
            int[] attributeIndices = new int[1] {
                attributeIndexForVerifier
            };
            if (!this.UPIProof.Verify(verifiers, attributeIndices))
            {
                return(false);
            }

            // Verify Inequality Proof
            FieldZqElement committedAttribute             = ProtocolHelper.ComputeXi(verifier.IP, attributeIndexForVerifier - 1, attributeValue);
            VerifierInequalityProofParameters ieqVerifier = new VerifierInequalityProofParameters(this.UPIProof.PedersenCommitmentValues[0], committedAttribute, new CryptoParameters(verifier.IP));

            return(this.Verify(ieqVerifier));
        }
        /// <summary>
        /// Creates a UProve token for non-device protected tokens.
        /// </summary>
        /// <param name="pppp">Prover presentation protocol parameters for non-device protected token.</param>
        /// <param name="device">Device information. Required for device protected tokens.</param>
        public OpenUProveToken(ProverPresentationProtocolParameters pppp) : base(null, null, null)
        {
            if (pppp == null)
            {
                throw new ArgumentNullException("UProveToken constructor expects non-null input.");
            }

            this.Group = pppp.IP.Gq;
            this.Bases = new GroupElement[pppp.Attributes.Length + 2];
            for (int i = 0; i < this.G.Length; ++i)
            {
                this.G[i] = pppp.IP.G[i];
            }
            this.Value = pppp.KeyAndToken.Token.H;

            this.Exponents = new FieldZqElement[this.RepresentationLength];
            this.Alpha     = pppp.KeyAndToken.PrivateKey.Invert();

            FieldZqElement [] attributes = new FieldZqElement[pppp.Attributes.Length];
            for (int i = 0; i < attributes.Length; ++i)
            {
                attributes[i] = ProtocolHelper.ComputeXi(pppp.IP, i, pppp.Attributes[i]);
            }
            this.SetAttributeXI(attributes);
            this.AttributeXT = ProtocolHelper.ComputeXt(pppp.IP, pppp.KeyAndToken.Token.TI, pppp.KeyAndToken.Token.IsDeviceProtected);
        }
Exemple #3
0
 /// <summary>
 /// Computes the revocation value from its byte array encoding, to be added to an accumulator or used
 /// to compute the witness.
 /// </summary>
 /// <param name="ip">The issuer parameters, containing the information on how to transform the encoded value.</param>
 /// <param name="revocationIndex">The 1-based index of the revocation attribute.</param>
 /// <param name="attributeValue">The attribute value.</param>
 /// <returns>The revocation value.</returns>
 public static FieldZqElement ComputeRevocationValue(IssuerParameters ip, int revocationIndex, byte[] attributeValue)
 {
     if (revocationIndex <= 0)
     {
         throw new ArgumentException("revocationIndex must be positive: " + revocationIndex);
     }
     return(ProtocolHelper.ComputeXi(ip, revocationIndex - 1, attributeValue));
 }
Exemple #4
0
        /// <summary>
        /// Computes the non-revocation proof.
        /// </summary>
        /// <param name="ip">The Issuer parameters associated with the presented U-Prove token.</param>
        /// <param name="rap">The Revocation Authority parameters.</param>
        /// <param name="witness">The user non-revocation witness.</param>
        /// <param name="commitmentIndex">The 0-based index of the revocation commitment in the attribute commitments.</param>
        /// <param name="presentationProof">The presentation proof generated with the U-Prove token.</param>
        /// <param name="cpv">The commitment private values generated when presenting the U-Prove token.</param>
        /// <param name="revocationIndex">The 1-based index of the revocation attribute in the U-Prove token.</param>
        /// <param name="attributes">The token attributes.</param>
        /// <returns>A non-revocation proof.</returns>
        public static NonRevocationProof GenerateNonRevocationProof(IssuerParameters ip, RAParameters rap, RevocationWitness witness, int commitmentIndex, PresentationProof presentationProof, CommitmentPrivateValues cpv, int revocationIndex, byte[][] attributes)
        {
            if (revocationIndex <= 0)
            {
                throw new ArgumentException("revocationIndex must be positive: " + revocationIndex);
            }
            GroupElement   tildeCid = presentationProof.Commitments[commitmentIndex].TildeC;
            FieldZqElement xid      = ProtocolHelper.ComputeXi(ip, revocationIndex - 1, attributes[revocationIndex - 1]);
            FieldZqElement tildeOid = cpv.TildeO[commitmentIndex];

            return(GenerateNonRevocationProof(rap, witness, tildeCid, xid, tildeOid));
        }
 /// <summary>
 /// Generates a member set for UProve tokens.
 /// </summary>
 /// <param name="ip">Issuer parameters.</param>
 /// <param name="attributeIndexInToken">Index of attribute in the token the proof will be about (encoding of memberSet depends on this). Index is 1....n.</param>
 /// <param name="memberSet">Member set</param>
 /// <returns></returns>
 public static FieldZqElement[] GenerateMemberSet(IssuerParameters ip, int attributeIndexInToken, byte[][] memberSet)
 {
     if (attributeIndexInToken <= 0)
     {
         throw new ArgumentException("attributeIndexInToken must be a positive integer");
     }
     FieldZqElement[] output = new FieldZqElement[memberSet.Length];
     for (int i = 0; i < output.Length; ++i)
     {
         output[i] = ProtocolHelper.ComputeXi(ip, attributeIndexInToken - 1, memberSet[i]);
     }
     return(output);
 }
        /// <summary>
        /// Generates a Pedersen Commitment to the attribute.  The committed value is equal to
        /// what it would be if the attribute was encoded in the token.  The committed value depends
        /// on the attribute index.
        /// </summary>
        /// <param name="ip">Issuer parameters</param>
        /// <param name="attributeIndex">The 1-based index of the attribute as it would be in the token</param>
        /// <param name="attribute">Encoding of the attribute</param>
        public PedersenCommitment(IssuerParameters ip, int attributeIndex, byte[] attribute)
        {
            CryptoParameters crypto = new CryptoParameters(ip);

            this.Group = crypto.Group;
            this.Bases = new GroupElement[2] {
                crypto.Generators[0], crypto.Generators[1]
            };
            FieldZqElement committedValue = ProtocolHelper.ComputeXi(ip, attributeIndex - 1, attribute);
            FieldZqElement opening        = this.Group.FieldZq.GetRandomElement(false);

            this.Exponents = new FieldZqElement[2] {
                committedValue, opening
            };
            this.Value = this.Group.MultiExponentiate(this.Bases, this.Exponents);
        }
Exemple #7
0
        /// <summary>
        /// Generates proofs that a token attribute value is not equal to any values in the target array.
        /// </summary>
        /// <param name="prover">Inequality proof parameters for the token.</param>
        /// <param name="target">Target values array.</param>
        /// <returns>An inequality proof.</returns>
        public static InequalityProof[] GenerateUProveInequalityProofs(EQProofUProveProverData prover, byte[][] target)
        {
            // Create PedersenCommitments
            int commitmentIndex    = ClosedPedersenCommitment.GetCommitmentIndex(prover.PPPP.Committed, prover.index);
            PedersenCommitment ped = new PedersenCommitment(prover.PPPP, prover.PP, prover.CPV, commitmentIndex);

            // Create EqualityProof
            CryptoParameters crypto = new CryptoParameters(prover.PPPP.IP);

            InequalityProof[] proofs = new InequalityProof[target.Length];
            for (int i = 0; i < target.Length; i++)
            {
                FieldZqElement targetValue = ProtocolHelper.ComputeXi(prover.PPPP.IP, prover.index - 1, target[i]);
                proofs[i] = new InequalityProof(new ProverInequalityProofParameters(ped, targetValue, crypto));
            }
            return(proofs);
        }
Exemple #8
0
        /// <summary>
        /// Constructor. Creates an inequality proof that a token attribute is not equal to some value.
        /// </summary>
        /// <param name="prover">Token description.</param>
        /// <param name="attributeIndexForProver">1-based attribute index in token.</param>
        /// <param name="attributeValue">Attribute value to compare actual token attribute.</param>
        /// <returns>Inequality proof.</returns>
        public InequalityProof(ProverPresentationProtocolParameters prover, int attributeIndexForProver, byte[] attributeValue)
        {
            // generate Pedersen Commitments to attributes
            ProverPresentationProtocolParameters[] provers = new ProverPresentationProtocolParameters[] { prover };
            int[] attributeIndices = new int[] { attributeIndexForProver };
            PedersenCommitment[] attributeCommitments = PedersenCommitment.PedersenCommmitmentsToAttributes(provers, attributeIndices);

            // create inequality proof using Pedersen Commitmetns
            FieldZqElement committedAttribute         = ProtocolHelper.ComputeXi(prover.IP, attributeIndexForProver - 1, attributeValue);
            ProverInequalityProofParameters ieqProver = new ProverInequalityProofParameters(attributeCommitments[0], committedAttribute, new CryptoParameters(prover.IP));

            ConstructorHelper(ieqProver);

            // add UProve Integration proof
            this.UPIProof = new UProveIntegrationProof(provers, attributeIndices, attributeCommitments);
            this.UPIProof.IsGroupSerializable = false;
        }
        /// <summary>
        /// Creates a Pedersen Commitment for one of the attributes using the commitment
        /// from the PresentationProof.
        /// </summary>
        /// <param name="pppp">Parameters used by Prover</param>
        /// <param name="pp">The presentation proof generated by the Prover</param>
        /// <param name="cpv">Output of PresentationProof.Generate()</param>
        /// <param name="commitmentIndex">Which commitment to use: index into cpv.TildeO array.
        ///                         DO NOT use the attribute index, the Constructor will compute it from
        ///                         the commitmentIndex.</param>
        public PedersenCommitment(ProverPresentationProtocolParameters pppp, PresentationProof pp, CommitmentPrivateValues cpv, int commitmentIndex)
        {
            int            attributeIndex = pppp.Committed[commitmentIndex] - 1;
            FieldZqElement committedValue = ProtocolHelper.ComputeXi(pppp.IP, attributeIndex, pppp.Attributes[attributeIndex]);
            FieldZqElement opening        = cpv.TildeO[commitmentIndex];

            CryptoParameters crypto = new CryptoParameters(pppp.IP);

            this.Group = crypto.Group;
            this.Bases = new GroupElement[2] {
                crypto.Generators[0], crypto.Generators[1]
            };
            this.Exponents = new FieldZqElement[2] {
                committedValue, opening
            };
            this.Value = pp.Commitments[commitmentIndex].TildeC;
        }
        public void PresentationProofConstructorTest()
        {
            // generate array of commitments using PresentationProof
            CommitmentPrivateValues cpv;

            Assert.IsNotNull(_proverParams, "prover params null");
            PresentationProof proof = PresentationProof.Generate(_proverParams, out cpv);

            Assert.IsNotNull(proof.Commitments, "proof failed to generate commitments");
            Assert.IsNotNull(cpv, "failed to output cpv");
            Assert.IsNotNull(cpv.TildeO, "cpv.TildeO is null");
            CommitmentValues [] expectedCommitmentValues = proof.Commitments;

            // generate array of commitments using Pedersen Commitment constructor
            PedersenCommitment [] proverCommitments = PedersenCommitment.ArrayOfPedersenCommitments(_proverParams, proof, cpv);

            // compare values
            GroupElement expectedG = _proverParams.IP.Gq.G;
            GroupElement expectedH = _proverParams.IP.G[1];

            for (int commitIndex = 0; commitIndex < expectedCommitmentValues.Length; ++commitIndex)
            {
                int            attributeIndex         = _proverParams.Committed[commitIndex] - 1;
                FieldZqElement expectedCommittedValue = ProtocolHelper.ComputeXi(_proverParams.IP, attributeIndex, _proverParams.Attributes[attributeIndex]);
                Assert.AreEqual(expectedCommittedValue, proverCommitments[commitIndex].CommittedValue, "wrong committed value");
                Assert.AreEqual(cpv.TildeO[commitIndex], proverCommitments[commitIndex].Opening, "opening does not match tildeO");
                Assert.AreEqual(expectedG, proverCommitments[commitIndex].G, "base g wrong");
                Assert.AreEqual(expectedH, proverCommitments[commitIndex].H, "base h wrong");
                Assert.AreEqual(expectedCommitmentValues[commitIndex].TildeC, proverCommitments[commitIndex].Value, "wrong value");
            }

            // generate array of closed pedersen commitments
            ClosedPedersenCommitment[] verifierCommitments = ClosedPedersenCommitment.ArrayOfClosedPedersenCommitments(_verifierParams.IP, proof);

            // compare bases and values to actualCommitments
            Assert.IsTrue(ClosedPedersenCommitment.AreBasesEqual(verifierCommitments), "all closed commitments should have same bases.");
            Assert.IsTrue(verifierCommitments[0].AreBasesEqual(proverCommitments[0]), "all closed commitments should have same bases as open commitments");
            Assert.AreEqual(proverCommitments.Length, verifierCommitments.Length, "should be as many open and closed commitments");
            for (int i = 0; i < verifierCommitments.Length; ++i)
            {
                Assert.AreEqual(verifierCommitments[i].Value, proverCommitments[i].Value, "open and closed commitments should be equal.");
            }
        }
Exemple #11
0
        /// <summary>
        /// Verifies proofs that a token attribute value is not equal to a any of the target values.
        /// </summary>
        /// <param name="verifier">Equality proof parameters for the token.</param>
        /// <param name="target">Target values.</param>
        /// <param name="eQProof">The inequality proofs to verify.</param>
        /// <exception cref="InvalidUProveArtifactException">Thrown if a proof is invalid.</exception>
        public static void VerifyUProveEqualityProofs(EQProofUProveVerifierData verifier, byte[][] target, InequalityProof[] iNeqProof)
        {
            if (target == null || iNeqProof == null || target.Length != iNeqProof.Length)
            {
                throw new ArgumentException("target and iNeqProof must have the same length");
            }

            int commitmentIndex = ClosedPedersenCommitment.GetCommitmentIndex(verifier.VPPP.Committed, verifier.index);
            ClosedPedersenCommitment closedPed = new ClosedPedersenCommitment(verifier.VPPP.IP, verifier.PP, commitmentIndex);
            CryptoParameters         crypto    = new CryptoParameters(verifier.VPPP.IP);

            for (int i = 0; i < target.Length; i++)
            {
                FieldZqElement targetValue = ProtocolHelper.ComputeXi(verifier.VPPP.IP, verifier.index - 1, target[i]);
                if (!iNeqProof[i].Verify(new VerifierInequalityProofParameters(closedPed.Value, targetValue, crypto)))
                {
                    throw new InvalidUProveArtifactException("invalid equality proof");
                }
            }
        }
Exemple #12
0
        /// <summary>
        /// Create a verifiable encryption of a pseudonym based on a U-Prove presentation proof.  This is a wrapper
        /// of <c>VerifiableEncrypt</c>.
        ///
        /// </summary>
        /// <param name="escrowParams"> Parameters of the ID escrow scheme</param>
        /// <param name="escrowPublicKey">  Public key of the Auditor (the authority who can decrypt the output ciphertex).</param>
        /// <param name="token"> The U-Prove token corresponding to the <c>proof</c>. </param>
        /// <param name="additionalInfo">See documentation of <c>VerifiableEncrypt</c></param>
        /// <param name="proof">A U-Prove prsentation proof.</param>
        /// <param name="cpv">Commitment opening information, output when generating <c>proof</c>.</param>
        /// <param name="idAttributeIndex"> Index of the attribute to use for identity escrow (1-based indexing). This attribute <b>must be</b>
        ///                                 the first commited attribute (take care if using multiple extensions). </param>
        /// <param name="attributes"> Attributes in <c>token</c>.</param>

        /// <returns></returns>
        public static IDEscrowCiphertext UProveVerifableEncrypt(IDEscrowParams escrowParams, IDEscrowPublicKey escrowPublicKey,
                                                                UProveToken token, byte[] additionalInfo, PresentationProof proof,
                                                                CommitmentPrivateValues cpv, int idAttributeIndex, byte[][] attributes)
        {
            if (token == null || escrowParams == null || proof == null || cpv == null)
            {
                throw new ArgumentNullException("null input to UProveVerifiableEncrypt");
            }

            if (proof.Commitments == null || proof.Commitments.Length < 1 ||
                attributes.Length < idAttributeIndex || cpv.TildeO == null || cpv.TildeO.Length < 1)
            {
                throw new InvalidUProveArtifactException("invalid inputs to UProveVerifiableEncrypt");
            }


            byte[]         tokenId = ProtocolHelper.ComputeTokenID(escrowParams.ip, token);
            GroupElement   Cx1     = proof.Commitments[0].TildeC;                                                                       // x1 is the first committed attribute
            FieldZqElement x1      = ProtocolHelper.ComputeXi(escrowParams.ip, idAttributeIndex - 1, attributes[idAttributeIndex - 1]); // arrays are 0-based
            FieldZqElement tildeO1 = cpv.TildeO[0];

            return(IDEscrowFunctions.VerifiableEncrypt(escrowParams, escrowPublicKey, tokenId, Cx1, x1, tildeO1, additionalInfo));
        }
        public void TestIEWithRealToken()
        {
            /********** begin: this section of code taken from EndToEndTest.cs, TestMethod PseudonymAndCommitmentsTest *****/
            System.Text.UTF8Encoding encoding = new System.Text.UTF8Encoding();

            // Issuer setup
            IssuerSetupParameters isp = new IssuerSetupParameters(maxNumberOfAttributes);

            isp.UidP = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
            isp.E    = new byte[] { (byte)1, (byte)1, (byte)1, (byte)1 };
            isp.UseRecommendedParameterSet = true;
            isp.S = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
            IssuerKeyAndParameters ikap = isp.Generate();
            IssuerParameters       ip2  = ikap.IssuerParameters;

            // Issuance
            byte[][] attributes        = new byte[][] { encoding.GetBytes("Attribute 1"), encoding.GetBytes("Attribute 2"), encoding.GetBytes("Attribute 3"), encoding.GetBytes("Attribute 4") };
            byte[]   tokenInformation  = new byte[] { };
            byte[]   proverInformation = new byte[] { };
            int      numberOfTokens    = 1;

            IssuerProtocolParameters ipp = new IssuerProtocolParameters(ikap);

            ipp.Attributes       = attributes;
            ipp.NumberOfTokens   = numberOfTokens;
            ipp.TokenInformation = tokenInformation;
            Issuer issuer = ipp.CreateIssuer();
            FirstIssuanceMessage     msg1 = issuer.GenerateFirstMessage();
            ProverProtocolParameters ppp  = new ProverProtocolParameters(ip2);

            ppp.Attributes        = attributes;
            ppp.NumberOfTokens    = numberOfTokens;
            ppp.TokenInformation  = tokenInformation;
            ppp.ProverInformation = proverInformation;
            Prover prover = ppp.CreateProver();
            SecondIssuanceMessage msg2 = prover.GenerateSecondMessage(msg1);
            ThirdIssuanceMessage  msg3 = issuer.GenerateThirdMessage(msg2);

            UProveKeyAndToken[] upkt = prover.GenerateTokens(msg3);

            // Pseudonym
            int[]             disclosed = new int[0];
            int[]             committed = new int[] { 2, 4 };
            byte[]            message   = encoding.GetBytes("this is the presentation message, this can be a very long message");
            byte[]            scope     = encoding.GetBytes("scope");
            PresentationProof proof;

            FieldZqElement[] tildeO;

            // Valid presentation
            proof = PresentationProof.Generate(ip2, disclosed, committed, 1, scope, message, null, null, upkt[0], attributes, out tildeO);
            try { proof.Verify(ip2, disclosed, committed, 1, scope, message, null, upkt[0].Token); }
            catch { Assert.Fail("Proof failed to verify"); }
            /******** end code from EndToEndTest.cs ***********/

            // Use the commitment to attribute x_2 for ID escrow
            GroupElement   Cx2     = proof.Commitments[0].TildeC;                     // x2 is the first committed attribute
            FieldZqElement x2      = ProtocolHelper.ComputeXi(ip2, 1, attributes[1]); // attributes[] is zero indexed.
            FieldZqElement tildeO2 = tildeO[0];

            // double check that Cx2 is computed as we expect.
            GroupElement Cx2Prime = ip2.Gq.G.Exponentiate(x2);

            Cx2Prime = Cx2Prime.Multiply(ip2.G[1].Exponentiate(tildeO2));
            Assert.IsTrue(Cx2Prime.Equals(Cx2));

            // Setup
            IDEscrowParams     ieParam3 = new IDEscrowParams(ip2);
            IDEscrowPrivateKey priv     = new IDEscrowPrivateKey(ieParam3);                  // we can't re-use the keypair above, it was created with different issuer params
            IDEscrowPublicKey  pub      = new IDEscrowPublicKey(ieParam3, priv);

            byte[] tokenID = ProtocolHelper.ComputeTokenID(ip2, upkt[0].Token);
            // additionalInfo is defined above.

            // Encrypt
            IDEscrowCiphertext ctext = IDEscrowFunctions.VerifiableEncrypt(ieParam3, pub, tokenID, Cx2, x2, tildeO2, additionalInfo);

            // Verify
            Assert.IsTrue(IDEscrowFunctions.Verify(ieParam3, ctext, tokenID, pub, Cx2));
            // Decrypt
            GroupElement PE = IDEscrowFunctions.Decrypt(ieParam3, ctext, priv);

            Assert.IsTrue(PE.Equals(ieParam3.Ge.Exponentiate(x2)));   // Ensure PE == (ge)^x2
        }
        public void ProtocolTest()
        {
            Stopwatch sw = new Stopwatch();

            sw.Start();
            bool[] bools = new bool[] { true, false };
            foreach (bool isSubgroupConstruction in bools)
            {
                foreach (bool supportDevice in bools)
                {
                    var vectors =
                        supportDevice ?
                        (isSubgroupConstruction ?
                         GetTestVectors("testvectorssubgroup_Device_doc.txt")
                            :
                         GetTestVectors("testvectorsEC_Device_doc.txt"))
                        :
                        (isSubgroupConstruction ?
                         GetTestVectors("testvectorssubgroup_doc.txt")
                            :
                         GetTestVectors("testvectorsEC_doc.txt"));

                    IssuerKeyAndParameters ikap = LoadIssuerKeyAndParameters(isSubgroupConstruction, vectors["GroupName"], supportDevice, vectors);
                    FieldZq Zq = ikap.IssuerParameters.Zq;
                    // replace random y0/g0 with test vector values
                    ikap.PrivateKey            = Zq.GetElement(HexToBytes(vectors["y0"]));
                    ikap.IssuerParameters.G[0] = CreateGroupElement(ikap.IssuerParameters.Gq, vectors["g0"]);
                    Assert.AreEqual(ikap.IssuerParameters.G[0], ikap.IssuerParameters.Gq.G.Exponentiate(ikap.PrivateKey), "g0 computation");
                    IssuerParameters ip = ikap.IssuerParameters;
                    ip.Verify();

                    /*
                     * issuance
                     */

                    byte[][] A = new byte[][] {
                        HexToBytes(vectors["A1"]),
                        HexToBytes(vectors["A2"]),
                        HexToBytes(vectors["A3"]),
                        HexToBytes(vectors["A4"]),
                        HexToBytes(vectors["A5"])
                    };

                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x1"])), ProtocolHelper.ComputeXi(ip, 0, A[0]), "x1");
                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x2"])), ProtocolHelper.ComputeXi(ip, 1, A[1]), "x2");
                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x3"])), ProtocolHelper.ComputeXi(ip, 2, A[2]), "x3");
                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x4"])), ProtocolHelper.ComputeXi(ip, 3, A[3]), "x4");
                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x5"])), ProtocolHelper.ComputeXi(ip, 4, A[4]), "x5");

                    byte[] TI = HexToBytes(vectors["TI"]);
                    Assert.IsTrue(HexToBytes(vectors["P"]).SequenceEqual(ip.Digest(supportDevice)), "P");
                    Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["xt"])), ProtocolHelper.ComputeXt(ip, TI, supportDevice), "xt");

                    IDevice      device = null;
                    GroupElement hd     = null;
                    if (supportDevice)
                    {
                        device = new VirtualDevice(ip, Zq.GetElement(HexToBytes(vectors["xd"])), Zq.GetElement(HexToBytes(vectors["wdPrime"])));
                        IDevicePresentationContext context = device.GetPresentationContext();
                        // Test device responses
                        Assert.AreEqual(CreateGroupElement(ip.Gq, vectors["hd"]), device.GetDevicePublicKey(), "hd");
                        Assert.AreEqual(CreateGroupElement(ip.Gq, vectors["ad"]), context.GetInitialWitness(), "ad");
                        Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["rdPrime"])), context.GetDeviceResponse(HexToBytes(vectors["md"]), HexToBytes(vectors["mdPrime"]), ip.HashFunctionOID), "rdPrime");
                        hd = CreateGroupElement(ip.Gq, vectors["hd"]);
                    }

                    IssuerProtocolParameters ipp = new IssuerProtocolParameters(ikap);
                    ipp.Attributes       = A;
                    ipp.NumberOfTokens   = 1;
                    ipp.TokenInformation = TI;
                    ipp.DevicePublicKey  = hd;
                    ipp.PreGeneratedW    = new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["w"])) };
                    Issuer issuer = ipp.CreateIssuer();
                    byte[] PI     = HexToBytes(vectors["PI"]);

                    ProverProtocolParameters ppp = new ProverProtocolParameters(ip);
                    ppp.Attributes        = A;
                    ppp.NumberOfTokens    = 1;
                    ppp.TokenInformation  = TI;
                    ppp.ProverInformation = PI;
                    ppp.DevicePublicKey   = hd;
                    ppp.ProverRandomData  = new ProverRandomData(
                        new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["alpha"])) },
                        new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["beta1"])) },
                        new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["beta2"])) });
                    Prover prover = ppp.CreateProver();

                    FirstIssuanceMessage msg1 = issuer.GenerateFirstMessage();
                    Assert.AreEqual(msg1.sigmaZ, CreateGroupElement(ip.Gq, vectors["sigmaZ"]), "sigmaZ");
                    Assert.AreEqual(msg1.sigmaA[0], CreateGroupElement(ip.Gq, vectors["sigmaA"]), "sigmaA");
                    Assert.AreEqual(msg1.sigmaB[0], CreateGroupElement(ip.Gq, vectors["sigmaB"]), "sigmaB");

                    SecondIssuanceMessage msg2 = prover.GenerateSecondMessage(msg1);
                    Assert.AreEqual(msg2.sigmaC[0], Zq.GetElement(HexToBytes(vectors["sigmaC"])), "sigmaC");

                    ThirdIssuanceMessage msg3 = issuer.GenerateThirdMessage(msg2);
                    Assert.AreEqual(msg3.sigmaR[0], Zq.GetElement(HexToBytes(vectors["sigmaR"])), "sigmaR");

                    UProveKeyAndToken[] upkt = prover.GenerateTokens(msg3);
                    Assert.AreEqual(upkt[0].PrivateKey, Zq.GetElement(HexToBytes(vectors["alphaInverse"])), "alphaInverse");
                    UProveToken token = upkt[0].Token;
                    Assert.AreEqual(token.H, CreateGroupElement(ip.Gq, vectors["h"]), "h");
                    Assert.AreEqual(token.SigmaZPrime, CreateGroupElement(ip.Gq, vectors["sigmaZPrime"]), "sigmaZPrime");
                    Assert.AreEqual(token.SigmaCPrime, Zq.GetElement(HexToBytes(vectors["sigmaCPrime"])), "sigmaCPrime");
                    Assert.AreEqual(token.SigmaRPrime, Zq.GetElement(HexToBytes(vectors["sigmaRPrime"])), "sigmaRPrime");
                    Assert.IsTrue(HexToBytes(vectors["UIDt"]).SequenceEqual(ProtocolHelper.ComputeTokenID(ip, token)), "UIDt");
                    Assert.IsTrue(supportDevice == token.IsDeviceProtected);

                    /*
                     * presentation
                     */

                    int[]  disclosed = Array.ConvertAll <string, int>(vectors["D"].Split(','), new Converter <string, int>(stringToInt));
                    int[]  committed = Array.ConvertAll <string, int>(vectors["C"].Split(','), new Converter <string, int>(stringToInt));
                    byte[] m         = HexToBytes(vectors["m"]);
                    byte[] md        = null;
                    IDevicePresentationContext deviceContext = null;
                    if (supportDevice)
                    {
                        md            = HexToBytes(vectors["md"]);
                        deviceContext = device.GetPresentationContext();
                    }
                    int p;
                    if (!int.TryParse(vectors["p"], out p))
                    {
                        p = PresentationProof.DeviceAttributeIndex;
                    }
                    byte[] s = HexToBytes(vectors["s"]);
                    int    commitmentIndex = committed[0];
                    ProverPresentationProtocolParameters pppp = new ProverPresentationProtocolParameters(ip, disclosed, m, upkt[0], A);
                    pppp.Committed = committed;
                    pppp.PseudonymAttributeIndex = p;
                    pppp.PseudonymScope          = s;
                    pppp.DeviceMessage           = md;
                    pppp.DeviceContext           = deviceContext;
                    pppp.RandomData = new ProofGenerationRandomData(
                        Zq.GetElement(HexToBytes(vectors["w0"])),
                        new FieldZqElement[] {
                        Zq.GetElement(HexToBytes(vectors["w1"])),
                        Zq.GetElement(HexToBytes(vectors["w3"])),
                        Zq.GetElement(HexToBytes(vectors["w4"]))
                    },
                        supportDevice ? Zq.GetElement(HexToBytes(vectors["wd"])) : null,
                        new FieldZqElement[] {
                        Zq.GetElement(HexToBytes(vectors["tildeO" + commitmentIndex])),
                    },
                        new FieldZqElement[] {
                        Zq.GetElement(HexToBytes(vectors["tildeW" + commitmentIndex]))
                    });
                    CommitmentPrivateValues cpv;
                    PresentationProof       proof = PresentationProof.Generate(pppp, out cpv);
                    Assert.IsTrue(HexToBytes(vectors["a"]).SequenceEqual(proof.A), "a");
                    Assert.AreEqual(ProtocolHelper.GenerateScopeElement(ip.Gq, s), CreateGroupElement(ip.Gq, vectors["gs"]));
                    Assert.IsTrue(HexToBytes(vectors["ap"]).SequenceEqual(proof.Ap), "ap");
                    Assert.AreEqual(proof.Ps, CreateGroupElement(ip.Gq, vectors["Ps"]), "Ps");
                    Assert.IsTrue(HexToBytes(vectors["A2"]).SequenceEqual(proof.DisclosedAttributes[0]), "A2");
                    Assert.IsTrue(HexToBytes(vectors["A5"]).SequenceEqual(proof.DisclosedAttributes[1]), "A5");
                    Assert.AreEqual(proof.R[0], Zq.GetElement(HexToBytes(vectors["r0"])), "r0");
                    Assert.AreEqual(proof.R[1], Zq.GetElement(HexToBytes(vectors["r1"])), "r1");
                    Assert.AreEqual(proof.R[2], Zq.GetElement(HexToBytes(vectors["r3"])), "r3");
                    Assert.AreEqual(proof.R[3], Zq.GetElement(HexToBytes(vectors["r4"])), "r4");
                    if (supportDevice)
                    {
                        Assert.AreEqual(proof.R[4], Zq.GetElement(HexToBytes(vectors["rd"])), "rd");
                    }
                    Assert.AreEqual(proof.Commitments[0].TildeR, Zq.GetElement(HexToBytes(vectors["tildeR" + commitmentIndex])), "tildeR" + commitmentIndex);
                    Assert.IsTrue(cpv.TildeO.Length == 1);
                    Assert.AreEqual(cpv.TildeO[0], Zq.GetElement(HexToBytes(vectors["tildeO" + commitmentIndex])), "tildeO" + commitmentIndex);
                    VerifierPresentationProtocolParameters vppp = new VerifierPresentationProtocolParameters(ip, disclosed, m, upkt[0].Token);
                    vppp.Committed = committed;
                    vppp.PseudonymAttributeIndex = p;
                    vppp.PseudonymScope          = s;
                    vppp.DeviceMessage           = md;
                    proof.Verify(vppp);
                }
            }

            sw.Stop();
            Debug.WriteLine("Protocol Test Elapsed Time: " + sw.ElapsedMilliseconds + "ms");
        }
Exemple #15
0
        public void InequalityTokenIntegration2Test()
        {
            // In this example, the token hashes the attribute
            // but example also works if hashAttributes=false
            bool hashAttributes = true;

            // Setting up attributes for token
            byte[][] attributes = new byte[][]
            {
                _encoding.GetBytes("Attribute 1"),
                _encoding.GetBytes("Attribute 2"),
                _encoding.GetBytes("Teaching Assistant"), // this is the attribute we'll compare
                _encoding.GetBytes("Attribute 4")
            };

            // generate token
            ProverPresentationProtocolParameters   prover;
            VerifierPresentationProtocolParameters verifier;

            StaticHelperClass.GetUProveParameters(hashAttributes, out prover, out verifier, null, attributes);

            CommitmentPrivateValues cpv;
            PresentationProof       proof = PresentationProof.Generate(prover, out cpv);

            // computing target constant - "Student"
            byte[]         targetAttribute      = _encoding.GetBytes("Student");
            int            targetAttributeIndex = 3 - 1;                                                                      // We will compare "Student" to the third token attribute.
            FieldZqElement targetValue          = ProtocolHelper.ComputeXi(prover.IP, targetAttributeIndex, targetAttribute); // this is what "Student" would be encoded as if it was the third token attribute

            // Create PedersenCommitments
            // The prover and verifier have a map Committed that contains the relationship between
            // token attributes and CommitmentPrivateValues.
            int commitmentIndex    = ClosedPedersenCommitment.GetCommitmentIndex(prover.Committed, 3); // attribute 3 from prover1
            PedersenCommitment ped = new PedersenCommitment(prover, proof, cpv, commitmentIndex);

            Assert.AreNotEqual(targetValue, ped.CommittedValue, "Committed value is not Student.");

            // Check that "Teaching Assistant" is the commited value of the pedesen commitment.
            FieldZqElement expectedCommittedValue = ProtocolHelper.ComputeXi(prover.IP, targetAttributeIndex, _encoding.GetBytes("Teaching Assistant"));

            Assert.AreEqual(expectedCommittedValue, ped.CommittedValue, "Committed value is Teaching Assistant.");

            // Create InequalityProof
            CryptoParameters crypto = new CryptoParameters(prover.IP);                                                        // Can use prover2.IP
            ProverInequalityProofParameters inequalityProver = new ProverInequalityProofParameters(ped, targetValue, crypto); // compares committed values in ped1 and ped2
            InequalityProof ineQproof = new InequalityProof(inequalityProver);

            // Verify InequalityProof
            commitmentIndex = ClosedPedersenCommitment.GetCommitmentIndex(verifier.Committed, 3); // attribute 3 from prover
            ClosedPedersenCommitment          closedPed          = new ClosedPedersenCommitment(verifier.IP, proof, commitmentIndex);
            VerifierInequalityProofParameters inequalityVerifier = new VerifierInequalityProofParameters(closedPed.Value, targetValue, crypto);

            Assert.IsTrue(ineQproof.Verify(inequalityVerifier));

            // test U-Prove wrapper
            InequalityProof ineQProof2 = InequalityProof.GenerateUProveInequalityProof(
                new EQProofUProveProverData(prover, cpv, proof, 3), targetAttribute);

            InequalityProof.VerifyUProveEqualityProof(
                new EQProofUProveVerifierData(verifier, proof, 3), targetAttribute, ineQProof2);
        }
        public void ProtocolTest()
        {
            Stopwatch sw = new Stopwatch();

            sw.Start();
            bool[] bools = new bool[] { true, false };
            foreach (bool isSubgroupConstruction in bools)
            {
                foreach (bool supportDevice in bools)
                {
                    foreach (int DSize in new int[] { 0, 2, 5 })
                    {
                        foreach (bool isLite in bools)
                        {
                            string filename = "TestVectorData\\testvectors_";
                            if (isSubgroupConstruction)
                            {
                                filename += "SG";
                            }
                            else
                            {
                                filename += "EC";
                            }
                            if (supportDevice)
                            {
                                filename += "_Device";
                            }
                            filename += ("_D" + DSize);
                            if (isLite)
                            {
                                filename += "_lite";
                            }
                            filename += "_doc.txt";
                            var vectors = GetTestVectors(filename);

                            IssuerKeyAndParameters ikap = LoadIssuerKeyAndParameters(isSubgroupConstruction, vectors["GroupName"], supportDevice, vectors);
                            FieldZq Zq = ikap.IssuerParameters.Zq;
                            // replace random y0/g0 with test vector values
                            ikap.PrivateKey            = Zq.GetElement(HexToBytes(vectors["y0"]));
                            ikap.IssuerParameters.G[0] = CreateGroupElement(ikap.IssuerParameters.Gq, vectors["g0"]);
                            Assert.AreEqual(ikap.IssuerParameters.G[0], ikap.IssuerParameters.Gq.G.Exponentiate(ikap.PrivateKey), "g0 computation");
                            IssuerParameters ip = ikap.IssuerParameters;
                            ip.Verify();

                            /*
                             * issuance
                             */

                            byte[][] A = new byte[][] {
                                HexToBytes(vectors["A1"]),
                                HexToBytes(vectors["A2"]),
                                HexToBytes(vectors["A3"]),
                                HexToBytes(vectors["A4"]),
                                HexToBytes(vectors["A5"])
                            };

                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x1"])), ProtocolHelper.ComputeXi(ip, 0, A[0]), "x1");
                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x2"])), ProtocolHelper.ComputeXi(ip, 1, A[1]), "x2");
                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x3"])), ProtocolHelper.ComputeXi(ip, 2, A[2]), "x3");
                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x4"])), ProtocolHelper.ComputeXi(ip, 3, A[3]), "x4");
                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["x5"])), ProtocolHelper.ComputeXi(ip, 4, A[4]), "x5");

                            byte[] TI = HexToBytes(vectors["TI"]);
                            Assert.IsTrue(HexToBytes(vectors["P"]).SequenceEqual(ip.Digest(supportDevice)), "P");
                            Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["xt"])), ProtocolHelper.ComputeXt(ip, TI, supportDevice), "xt");

                            IDevice      device = null;
                            GroupElement hd     = null;
                            if (supportDevice)
                            {
                                device = new VirtualDevice(ip, Zq.GetElement(HexToBytes(vectors["xd"])), Zq.GetElement(HexToBytes(vectors["wdPrime"])));
                                IDevicePresentationContext context = device.GetPresentationContext();
                                // Test device responses
                                Assert.AreEqual(CreateGroupElement(ip.Gq, vectors["hd"]), device.GetDevicePublicKey(), "hd");
                                Assert.AreEqual(CreateGroupElement(ip.Gq, vectors["ad"]), context.GetInitialWitness(), "ad");
                                Assert.AreEqual(Zq.GetElement(HexToBytes(vectors["rdPrime"])), context.GetDeviceResponse(HexToBytes(vectors["md"]), HexToBytes(vectors["cp"]), ip.HashFunctionOID), "rdPrime");
                                hd = CreateGroupElement(ip.Gq, vectors["hd"]);
                            }

                            IssuerProtocolParameters ipp = new IssuerProtocolParameters(ikap);
                            ipp.Attributes       = A;
                            ipp.NumberOfTokens   = 1;
                            ipp.TokenInformation = TI;
                            ipp.DevicePublicKey  = hd;
                            ipp.PreGeneratedW    = new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["w"])) };
                            Issuer issuer = ipp.CreateIssuer();
                            byte[] PI     = HexToBytes(vectors["PI"]);

                            ProverProtocolParameters ppp = new ProverProtocolParameters(ip);
                            ppp.Attributes        = A;
                            ppp.NumberOfTokens    = 1;
                            ppp.TokenInformation  = TI;
                            ppp.ProverInformation = PI;
                            ppp.DevicePublicKey   = hd;
                            ppp.ProverRandomData  = new ProverRandomData(
                                new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["alpha"])) },
                                new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["beta1"])) },
                                new FieldZqElement[] { Zq.GetElement(HexToBytes(vectors["beta2"])) });
                            Prover prover = ppp.CreateProver();

                            FirstIssuanceMessage msg1 = issuer.GenerateFirstMessage();
                            Assert.AreEqual(msg1.sigmaZ, CreateGroupElement(ip.Gq, vectors["sigmaZ"]), "sigmaZ");
                            Assert.AreEqual(msg1.sigmaA[0], CreateGroupElement(ip.Gq, vectors["sigmaA"]), "sigmaA");
                            Assert.AreEqual(msg1.sigmaB[0], CreateGroupElement(ip.Gq, vectors["sigmaB"]), "sigmaB");

                            SecondIssuanceMessage msg2 = prover.GenerateSecondMessage(msg1);
                            Assert.AreEqual(msg2.sigmaC[0], Zq.GetElement(HexToBytes(vectors["sigmaC"])), "sigmaC");

                            ThirdIssuanceMessage msg3 = issuer.GenerateThirdMessage(msg2);
                            Assert.AreEqual(msg3.sigmaR[0], Zq.GetElement(HexToBytes(vectors["sigmaR"])), "sigmaR");

                            UProveKeyAndToken[] upkt = prover.GenerateTokens(msg3);
                            Assert.AreEqual(upkt[0].PrivateKey, Zq.GetElement(HexToBytes(vectors["alphaInverse"])), "alphaInverse");
                            UProveToken token = upkt[0].Token;
                            Assert.AreEqual(token.H, CreateGroupElement(ip.Gq, vectors["h"]), "h");
                            Assert.AreEqual(token.SigmaZPrime, CreateGroupElement(ip.Gq, vectors["sigmaZPrime"]), "sigmaZPrime");
                            Assert.AreEqual(token.SigmaCPrime, Zq.GetElement(HexToBytes(vectors["sigmaCPrime"])), "sigmaCPrime");
                            Assert.AreEqual(token.SigmaRPrime, Zq.GetElement(HexToBytes(vectors["sigmaRPrime"])), "sigmaRPrime");
                            Assert.IsTrue(HexToBytes(vectors["UIDt"]).SequenceEqual(ProtocolHelper.ComputeTokenID(ip, token)), "UIDt");
                            Assert.IsTrue(supportDevice == token.IsDeviceProtected);

                            /*
                             * presentation
                             */


                            int[] disclosed = new int[] { };
                            if (vectors.ContainsKey("D") && vectors["D"].Length > 0)
                            {
                                disclosed = Array.ConvertAll <string, int>(vectors["D"].Split(','), new Converter <string, int>(stringToInt));
                            }
                            int[] undisclosed = new int[5 - disclosed.Length];
                            int   dIndex = 0, uIndex = 0;
                            for (int i = 1; i <= 5; i++)
                            {
                                if (disclosed.Length > 0 && disclosed[dIndex] == i)
                                {
                                    dIndex++;
                                }
                                else
                                {
                                    undisclosed[uIndex++] = i;
                                }
                            }
                            int[] committed = new int[] { };
                            if (vectors.ContainsKey("C") && vectors["C"].Length > 0)
                            {
                                committed = Array.ConvertAll <string, int>(vectors["C"].Split(','), new Converter <string, int>(stringToInt));
                            }
                            byte[] m  = HexToBytes(vectors["m"]);
                            byte[] md = HexToBytes(vectors["md"]);
                            IDevicePresentationContext deviceContext = null;
                            if (supportDevice)
                            {
                                deviceContext = device.GetPresentationContext();
                            }
                            int p = 0;
                            if (vectors.ContainsKey("p") && !int.TryParse(vectors["p"], out p))
                            {
                                p = PresentationProof.DeviceAttributeIndex;
                            }
                            byte[] s = vectors.ContainsKey("s") ? HexToBytes(vectors["s"]) : null;
                            int    commitmentIndex = committed.Length > 0 ? committed[0] : 0;
                            ProverPresentationProtocolParameters pppp = new ProverPresentationProtocolParameters(ip, disclosed, m, upkt[0], A);
                            pppp.Committed = committed;
                            pppp.PseudonymAttributeIndex = p;
                            pppp.PseudonymScope          = s;
                            pppp.DeviceMessage           = md;
                            pppp.DeviceContext           = deviceContext;
                            FieldZqElement[] w = new FieldZqElement[undisclosed.Length];
                            for (int i = 0; i < undisclosed.Length; i++)
                            {
                                w[i] = Zq.GetElement(HexToBytes(vectors["w" + undisclosed[i]]));
                            }
                            FieldZqElement[] tildeO = new FieldZqElement[committed.Length];
                            FieldZqElement[] tildeW = new FieldZqElement[committed.Length];
                            for (int i = 0; i < committed.Length; i++)
                            {
                                tildeO[i] = Zq.GetElement(HexToBytes(vectors["tildeO" + committed[i]]));
                                tildeW[i] = Zq.GetElement(HexToBytes(vectors["tildeW" + committed[i]]));
                            }
                            pppp.RandomData = new ProofGenerationRandomData(
                                Zq.GetElement(HexToBytes(vectors["w0"])),
                                w,
                                supportDevice ? Zq.GetElement(HexToBytes(vectors["wd"])) : null,
                                tildeO,
                                tildeW);
                            CommitmentPrivateValues cpv;
                            PresentationProof       proof = PresentationProof.Generate(pppp, out cpv);
                            Assert.IsTrue(HexToBytes(vectors["a"]).SequenceEqual(proof.A), "a");
                            if (vectors.ContainsKey("gs"))
                            {
                                Assert.AreEqual(ProtocolHelper.GenerateScopeElement(ip.Gq, s), CreateGroupElement(ip.Gq, vectors["gs"]));
                                Assert.IsTrue(HexToBytes(vectors["ap"]).SequenceEqual(proof.Ap), "ap");
                                Assert.AreEqual(proof.Ps, CreateGroupElement(ip.Gq, vectors["Ps"]), "Ps");
                            }
                            for (int i = 0; i < disclosed.Length; i++)
                            {
                                Assert.IsTrue(HexToBytes(vectors["A" + disclosed[i]]).SequenceEqual(proof.DisclosedAttributes[i]), "A" + disclosed[i]);
                            }
                            Assert.AreEqual(proof.R[0], Zq.GetElement(HexToBytes(vectors["r0"])), "r0");
                            for (int i = 0; i < undisclosed.Length; i++)
                            {
                                Assert.AreEqual(proof.R[i + 1], Zq.GetElement(HexToBytes(vectors["r" + undisclosed[i]])), "r" + undisclosed[i]);
                            }
                            if (supportDevice)
                            {
                                Assert.AreEqual(proof.R[proof.R.Length - 1], Zq.GetElement(HexToBytes(vectors["rd"])), "rd");
                            }
                            for (int i = 0; i < committed.Length; i++)
                            {
                                Assert.AreEqual(proof.Commitments[i].TildeR, Zq.GetElement(HexToBytes(vectors["tildeR" + committed[i]])), "tildeR" + committed[i]);
                                Assert.IsTrue(cpv.TildeO.Length == committed.Length);
                                Assert.AreEqual(cpv.TildeO[i], Zq.GetElement(HexToBytes(vectors["tildeO" + committed[i]])), "tildeO" + committed[i]);
                            }
                            VerifierPresentationProtocolParameters vppp = new VerifierPresentationProtocolParameters(ip, disclosed, m, upkt[0].Token);
                            vppp.Committed = committed;
                            vppp.PseudonymAttributeIndex = p;
                            vppp.PseudonymScope          = s;
                            vppp.DeviceMessage           = md;
                            proof.Verify(vppp);
#if TEST_ID_ESCROW
                            if (committed.Length > 0)
                            {
                                IDEscrowParams     escrowParams     = new IDEscrowParams(ip);
                                IDEscrowPrivateKey escrowPrivateKey = new IDEscrowPrivateKey(Zq.GetElement(HexToBytes(vectors["ie_x"])));
                                IDEscrowPublicKey  escrowPublicKey  = new IDEscrowPublicKey(escrowParams, escrowPrivateKey);
                                Assert.AreEqual(escrowPublicKey.H, CreateGroupElement(ip.Gq, vectors["ie_H"]), "ie_H");
                                byte[] additionalInfo = HexToBytes(vectors["ie_additionalInfo"]);
                                int    ie_bIndex      = int.Parse(vectors["ie_b"]);

                                IDEscrowCiphertext ctext = IDEscrowFunctions.VerifiableEncrypt(
                                    escrowParams,
                                    escrowPublicKey,
                                    HexToBytes(vectors["UIDt"]),
                                    proof.Commitments[0].TildeC,
                                    ProtocolHelper.ComputeXi(ip, ie_bIndex - 1, A[ie_bIndex - 1]),
                                    cpv.TildeO[0],
                                    additionalInfo,
                                    new IDEscrowFunctions.IDEscrowProofGenerationRandomData(
                                        Zq.GetElement(HexToBytes(vectors["ie_r"])),
                                        Zq.GetElement(HexToBytes(vectors["ie_xbPrime"])),
                                        Zq.GetElement(HexToBytes(vectors["ie_rPrime"])),
                                        Zq.GetElement(HexToBytes(vectors["ie_obPrime"]))));
                                Assert.IsTrue(IDEscrowFunctions.UProveVerify(escrowParams, ctext, proof, upkt[0].Token, escrowPublicKey));
                                Assert.AreEqual(ctext.E1, CreateGroupElement(ip.Gq, vectors["ie_E1"]), "ie_E1");
                                Assert.AreEqual(ctext.E2, CreateGroupElement(ip.Gq, vectors["ie_E2"]), "ie_E2");
                                Assert.AreEqual(ctext.proof.c, Zq.GetElement(HexToBytes(vectors["ie_c"])), "ie_c");
                                Assert.AreEqual(ctext.proof.rR, Zq.GetElement(HexToBytes(vectors["ie_rr"])), "ie_rr");
                                Assert.AreEqual(ctext.proof.rXb, Zq.GetElement(HexToBytes(vectors["ie_rxb"])), "ie_rxb");
                                Assert.AreEqual(ctext.proof.rOb, Zq.GetElement(HexToBytes(vectors["ie_rob"])), "ie_rob");
                                GroupElement PE = IDEscrowFunctions.Decrypt(escrowParams, ctext, escrowPrivateKey);
                            }
#endif

#if TEST_DVA_REVOCATION
                            if (committed.Length > 0)
                            {
                                RAParameters             raParams = new RAParameters(ip.Gq.GroupName, CreateGroupElement(ip.Gq, vectors["r_K"]), ip.UidH);
                                FieldZqElement           delta    = Zq.GetElement(HexToBytes(vectors["r_delta"]));
                                RevocationAuthority      RA       = new RevocationAuthority(raParams, delta);
                                HashSet <FieldZqElement> revoked  = new HashSet <FieldZqElement>();
                                for (int i = 1; i <= 4; i++)
                                {
                                    revoked.Add(Zq.GetElement(HexToBytes(vectors["r_R" + i])));
                                }
                                RA.UpdateAccumulator(revoked, null);
                                Assert.AreEqual(RA.Accumulator, CreateGroupElement(ip.Gq, vectors["r_V"]), "r_V");
                                int r_id = 0;
                                int.TryParse(vectors["r_id"], out r_id);
                                RevocationWitness witness = RA.ComputeRevocationWitness(revoked, Zq.GetElement(HexToBytes(vectors["x" + r_id])));
                                Assert.AreEqual(witness.d, Zq.GetElement(HexToBytes(vectors["r_d"])), "r_d");
                                Assert.AreEqual(witness.W, CreateGroupElement(ip.Gq, vectors["r_W"]), "r_W");
                                Assert.AreEqual(witness.Q, CreateGroupElement(ip.Gq, vectors["r_Q"]), "r_Q");

                                NonRevocationProof nrProof = RevocationUser.GenerateNonRevocationProof(
                                    raParams,
                                    witness,
                                    proof.Commitments[0].TildeC, ProtocolHelper.ComputeXi(ip, r_id - 1, A[r_id - 1]),
                                    cpv.TildeO[0],
                                    new NonRevocationProofGenerationRandomData(new FieldZqElement[] {
                                    Zq.GetElement(HexToBytes(vectors["r_t1"])),
                                    Zq.GetElement(HexToBytes(vectors["r_t2"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k1"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k2"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k3"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k4"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k5"])),
                                    Zq.GetElement(HexToBytes(vectors["r_k6"]))
                                }));
                                Assert.AreEqual(nrProof.X, CreateGroupElement(ip.Gq, vectors["r_X"]), "r_X");
                                Assert.AreEqual(nrProof.Y, CreateGroupElement(ip.Gq, vectors["r_Y"]), "r_Y");
                                Assert.AreEqual(nrProof.Cd, CreateGroupElement(ip.Gq, vectors["r_Cd"]), "r_Cd");
                                Assert.AreEqual(nrProof.cPrime, Zq.GetElement(HexToBytes(vectors["r_cPrime"])), "r_cPrime");
                                Assert.AreEqual(nrProof.s[0], Zq.GetElement(HexToBytes(vectors["r_s1"])), "r_s1");
                                Assert.AreEqual(nrProof.s[1], Zq.GetElement(HexToBytes(vectors["r_s2"])), "r_s2");
                                Assert.AreEqual(nrProof.s[2], Zq.GetElement(HexToBytes(vectors["r_s3"])), "r_s3");
                                Assert.AreEqual(nrProof.s[3], Zq.GetElement(HexToBytes(vectors["r_s4"])), "r_s4");
                                Assert.AreEqual(nrProof.s[4], Zq.GetElement(HexToBytes(vectors["r_s5"])), "r_s5");
                                Assert.AreEqual(nrProof.s[5], Zq.GetElement(HexToBytes(vectors["r_s6"])), "r_s6");

                                // validate proof
                                RA.VerifyNonRevocationProof(ip, 0, proof, nrProof);
                            }
#endif

#if TEST_SET_MEMBERSHIP
                            if (committed.Length > 0)
                            {
                                int sm_x_index = 0;
                                int.TryParse(vectors["sm_x_index"], out sm_x_index);
                                int sm_n = 0;
                                int.TryParse(vectors["sm_n"], out sm_n);
                                int sm_i = 0;
                                int.TryParse(vectors["sm_i"], out sm_i);
                                byte[][]         setValues = new byte[sm_n][];
                                FieldZqElement[] sm_c      = new FieldZqElement[sm_n - 1];
                                FieldZqElement[] sm_r      = new FieldZqElement[sm_n - 1];
                                int randomIndex            = 0;
                                for (int i = 1; i <= sm_n; i++)
                                {
                                    if (i == sm_i)
                                    {
                                        setValues[i - 1] = HexToBytes(vectors["A" + sm_x_index]);
                                    }
                                    else
                                    {
                                        setValues[i - 1]  = HexToBytes(vectors["sm_s" + i]);
                                        sm_c[randomIndex] = Zq.GetElement(HexToBytes(vectors["sm_c" + i]));
                                        sm_r[randomIndex] = Zq.GetElement(HexToBytes(vectors["sm_r" + i]));
                                        randomIndex++;
                                    }
                                }
                                SetMembershipProofGenerationRandomData smRandom = new SetMembershipProofGenerationRandomData(sm_c, sm_r, Zq.GetElement(HexToBytes(vectors["sm_w"])));
                                SetMembershipProof setMembershipProof           = SetMembershipProof.Generate(pppp, proof, cpv, sm_x_index, setValues, smRandom);
                                for (int i = 1; i <= sm_n; i++)
                                {
                                    Assert.AreEqual(setMembershipProof.a[i - 1], CreateGroupElement(ip.Gq, vectors["sm_a" + i]), "sm_a" + i);
                                    if (i < sm_n) // no c_n in the proof
                                    {
                                        Assert.AreEqual(setMembershipProof.c[i - 1], Zq.GetElement(HexToBytes(vectors["sm_c" + i])), "sm_c" + i);
                                    }
                                    Assert.AreEqual(setMembershipProof.r[i - 1], Zq.GetElement(HexToBytes(vectors["sm_r" + i])), "sm_r" + i);
                                }

                                if (!SetMembershipProof.Verify(vppp, proof, setMembershipProof, sm_x_index, setValues))
                                {
                                    throw new InvalidUProveArtifactException("Invalid set membership proof");
                                }
                            }
#endif
                        }
                    }
                }
            }
            sw.Stop();
            Debug.WriteLine("Protocol Test Elapsed Time: " + sw.ElapsedMilliseconds + "ms");
        }
        public void PseudonymAndCommitmentsTest()
        {
            // Issuer setup
            IssuerSetupParameters isp = new IssuerSetupParameters(maxNumberOfAttributes);

            isp.UidP = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
            isp.E    = new byte[] { (byte)1, (byte)1, (byte)1, (byte)1 };
            isp.UseRecommendedParameterSet = true;
            isp.S = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
            IssuerKeyAndParameters ikap = isp.Generate();
            IssuerParameters       ip   = ikap.IssuerParameters;

            // Issuance
            byte[][] attributes        = new byte[][] { encoding.GetBytes("Attribute 1"), encoding.GetBytes("Attribute 2"), encoding.GetBytes("Attribute 3"), encoding.GetBytes("Attribute 4") };
            byte[]   tokenInformation  = new byte[] { };
            byte[]   proverInformation = new byte[] { };
            int      numberOfTokens    = 1;

            IssuerProtocolParameters ipp = new IssuerProtocolParameters(ikap);

            ipp.Attributes       = attributes;
            ipp.NumberOfTokens   = numberOfTokens;
            ipp.TokenInformation = tokenInformation;
            Issuer issuer = ipp.CreateIssuer();
            FirstIssuanceMessage     msg1 = issuer.GenerateFirstMessage();
            ProverProtocolParameters ppp  = new ProverProtocolParameters(ip);

            ppp.Attributes        = attributes;
            ppp.NumberOfTokens    = numberOfTokens;
            ppp.TokenInformation  = tokenInformation;
            ppp.ProverInformation = proverInformation;
            Prover prover = ppp.CreateProver();
            SecondIssuanceMessage msg2 = prover.GenerateSecondMessage(msg1);
            ThirdIssuanceMessage  msg3 = issuer.GenerateThirdMessage(msg2);

            UProveKeyAndToken[] upkt = prover.GenerateTokens(msg3);

            // Pseudonym
            int[]             disclosed = new int[0];
            int[]             committed = new int[] { 2, 4 };
            byte[]            message   = encoding.GetBytes("this is the presentation message, this can be a very long message");
            byte[]            scope     = encoding.GetBytes("scope");
            PresentationProof proof;

            FieldZqElement[] tildeO;

            // Valid presentation
            proof = PresentationProof.Generate(ip, disclosed, committed, 1, scope, message, null, null, upkt[0], attributes, out tildeO);
            proof.Verify(ip, disclosed, committed, 1, scope, message, null, upkt[0].Token);

            // Invalid pseudonym (wrong scope)
            proof = PresentationProof.Generate(ip, disclosed, committed, 1, scope, message, null, null, upkt[0], attributes, out tildeO);
            try { proof.Verify(ip, disclosed, committed, 1, encoding.GetBytes("bad scope"), message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Invalid pseudonym (wrong attribute)
            try { proof.Verify(ip, disclosed, committed, 2, scope, message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Invalid commitment (null list)
            try { proof.Verify(ip, disclosed, null, 2, scope, message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Invalid commitment (wrong committed values)
            try { proof.Verify(ip, disclosed, new int[] { 1, 4 }, 2, scope, message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Invalid commitment (wront number of committed values)
            try { proof.Verify(ip, disclosed, new int[] { 1 }, 2, scope, message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Invalid commitment (value)
            proof.Commitments[0].TildeA[0]++;
            try { proof.Verify(ip, disclosed, committed, 2, scope, message, null, upkt[0].Token); Assert.Fail(); }
            catch (InvalidUProveArtifactException) { }

            // Ensure tildeO is correct
            GroupElement   Cx2     = proof.Commitments[0].TildeC;                    // x2 is the first committed attribute
            FieldZqElement x2      = ProtocolHelper.ComputeXi(ip, 1, attributes[1]); // attributes[] is zero indexed.
            FieldZqElement tildeO2 = tildeO[0];
            // double check that Cx2 is computed correctly.
            GroupElement Cx2Prime = ip.Gq.MultiExponentiate(new GroupElement[] { ip.Gq.G, ip.G[1] }, new FieldZqElement[] { x2, tildeO2 });

            Assert.IsTrue(Cx2Prime.Equals(Cx2));
        }