/// <summary>
        /// The constructor.
        /// </summary>
        /// <param name="icallback">Specifies the callback used for update notifications sent to the parent.</param>
        /// <param name="mycaffe">Specifies the instance of MyCaffe with the open project.</param>
        /// <param name="properties">Specifies the properties passed into the trainer.</param>
        /// <param name="random">Specifies the random number generator used.</param>
        /// <param name="phase">Specifies the phase of the internal network to use.</param>
        public DqnAgent(IxTrainerCallback icallback, MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, Phase phase)
        {
            m_icallback  = icallback;
            m_brain      = new Brain <T>(mycaffe, properties, random, phase);
            m_properties = properties;
            m_random     = random;

            m_fGamma              = (float)properties.GetPropertyAsDouble("Gamma", m_fGamma);
            m_bUseRawInput        = properties.GetPropertyAsBool("UseRawInput", m_bUseRawInput);
            m_nMaxMemory          = properties.GetPropertyAsInt("MaxMemory", m_nMaxMemory);
            m_nTrainingUpdateFreq = properties.GetPropertyAsInt("TrainingUpdateFreq", m_nTrainingUpdateFreq);
            m_nExplorationNum     = properties.GetPropertyAsInt("ExplorationNum", m_nExplorationNum);
            m_nEpsSteps           = properties.GetPropertyAsInt("EpsSteps", m_nEpsSteps);
            m_dfEpsStart          = properties.GetPropertyAsDouble("EpsStart", m_dfEpsStart);
            m_dfEpsEnd            = properties.GetPropertyAsDouble("EpsEnd", m_dfEpsEnd);
            m_dfEpsDelta          = (m_dfEpsStart - m_dfEpsEnd) / m_nEpsSteps;
            m_dfExplorationRate   = m_dfEpsStart;

            if (m_dfEpsStart < 0 || m_dfEpsStart > 1)
            {
                throw new Exception("The 'EpsStart' is out of range - please specify a real number in the range [0,1]");
            }

            if (m_dfEpsEnd < 0 || m_dfEpsEnd > 1)
            {
                throw new Exception("The 'EpsEnd' is out of range - please specify a real number in the range [0,1]");
            }

            if (m_dfEpsEnd > m_dfEpsStart)
            {
                throw new Exception("The 'EpsEnd' must be less than the 'EpsStart' value.");
            }
        }
Exemple #2
0
        /// <summary>
        /// The constructor.
        /// </summary>
        /// <param name="mycaffe">Specifies the instance of MyCaffe assoiated with the open project - when using more than one Brain, this is the master project.</param>
        /// <param name="properties">Specifies the properties passed into the trainer.</param>
        /// <param name="random">Specifies the random number generator used.</param>
        /// <param name="phase">Specifies the phase under which to run.</param>
        public Brain(MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, Phase phase)
        {
            m_mycaffe    = mycaffe;
            m_solver     = mycaffe.GetInternalSolver();
            m_netOutput  = mycaffe.GetInternalNet(phase);
            m_netTarget  = new Net <T>(m_mycaffe.Cuda, m_mycaffe.Log, m_netOutput.net_param, m_mycaffe.CancelEvent, null, phase);
            m_properties = properties;
            m_random     = random;

            Blob <T> data = m_netOutput.blob_by_name("data");

            if (data == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected input 'data' blob!");
            }

            m_nBatchSize = data.num;

            Blob <T> logits = m_netOutput.blob_by_name("logits");

            if (logits == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected input 'logits' blob!");
            }

            m_nActionCount = logits.channels;

            m_transformer        = m_mycaffe.DataTransformer;
            m_blobActions        = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);
            m_blobQValue         = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobNextQValue     = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobExpectedQValue = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobDone           = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);
            m_blobLoss           = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobWeights        = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);

            m_fGamma = (float)properties.GetPropertyAsDouble("Gamma", m_fGamma);

            m_memLoss = m_netOutput.FindLastLayer(LayerParameter.LayerType.MEMORY_LOSS) as MemoryLossLayer <T>;
            if (m_memLoss == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected MEMORY_LOSS layer!");
            }

            double?dfRate = mycaffe.CurrentProject.GetSolverSettingAsNumeric("base_lr");

            if (dfRate.HasValue)
            {
                m_dfLearningRate = dfRate.Value;
            }

            m_nMiniBatch = m_properties.GetPropertyAsInt("MiniBatch", m_nMiniBatch);
            m_bUseAcceleratedTraining = properties.GetPropertyAsBool("UseAcceleratedTraining", false);

            if (m_nMiniBatch > 1)
            {
                m_colAccumulatedGradients = m_netOutput.learnable_parameters.Clone();
                m_colAccumulatedGradients.SetDiff(0);
            }
        }
Exemple #3
0
        /// <summary>
        /// The Initialize method initializes the streaming database component, preparing it for data queries.
        /// </summary>
        /// <param name="qt">Specifies the query type to use (see remarks).</param>
        /// <param name="strSchema">Specifies the query schema to use.</param>
        /// <remarks>
        /// Additional settings for each query type are specified in the 'strSettings' parameter as a set
        /// of key=value pairs for each of the settings.  The following are the query specific settings
        /// that are expected for each QUERY_TYPE.
        ///
        /// qt = TIME:
        ///    'QueryCount' - Specifies the number of items to include in each query.
        ///    'Start' - Specifies the start date of the stream.
        ///    'TimeSpanInMs' - Specifies the time increment between data items in the stream in milliseconds.
        ///    'SegmentSize' - Specifies the segment size of data queried from the database.
        ///    'MaxCount' - Specifies the maximum number of items to load into memory for each custom query.
        ///
        /// qt = GENERAL:
        ///    none at this time.
        ///
        /// The database schema defines the number of custom queries to use along with their names.  A simple key=value; list
        /// defines the streaming database schema using the following format:
        ///
        /// "ConnectionCount=2;
        ///  Connection0_CustomQueryName=Test1;
        ///  Connection0_CustomQueryParam=param_string1
        ///  Connection1_CustomQueryName=Test2;
        ///  Connection1_CustomQueryParam=param_string2"
        ///
        /// Each param_string specifies the parameters of the custom query and may include the database connection string, database
        /// table, and database fields to query.
        /// </remarks>
        public void Initialize(QUERY_TYPE qt, string strSchema)
        {
            if (qt == QUERY_TYPE.SYNCHRONIZED)
            {
                PropertySet ps            = new PropertySet(strSchema);
                int         nQueryCount   = ps.GetPropertyAsInt("QueryCount", 0);
                DateTime    dtStart       = ps.GetPropertyAsDateTime("Start");
                int         nTimeSpanInMs = ps.GetPropertyAsInt("TimeSpanInMs");
                int         nSegmentSize  = ps.GetPropertyAsInt("SegmentSize");
                int         nMaxCount     = ps.GetPropertyAsInt("MaxCount");

                m_iquery = new MgrQueryTime(nQueryCount, dtStart, nTimeSpanInMs, nSegmentSize, nMaxCount, strSchema, m_rgCustomQueryToAdd);
            }
            else
            {
                m_iquery = new MgrQueryGeneral(strSchema, m_rgCustomQueryToAdd);
            }
        }
        /// <summary>
        /// Initialize the Data Processor.
        /// </summary>
        /// <param name="imycaffe">Specifies the instance of MyCaffe to use.</param>
        /// <param name="idb">Specifies the instance of the streaming database to use.</param>
        /// <param name="strPreProcessorDLLPath">Specifies the path to the preprocessing DLL to use.</param>
        public void Initialize(IXMyCaffe <T> imycaffe, IXStreamDatabase idb, string strPreProcessorDLLPath, PropertySet properties)
        {
            m_mgrPreprocessor = new MgrPreprocessor <T>(imycaffe, idb);

            int nFields = properties.GetPropertyAsInt("Fields", 0);
            int nDepth  = properties.GetPropertyAsInt("Depth", 0);

            if (nFields == 0)
            {
                throw new Exception("You must specify the 'Fields' property with a value greater than 0.");
            }

            if (nDepth == 0)
            {
                throw new Exception("You must specify the 'Depth' property with a value greater than 0.");
            }

            m_mgrPreprocessor.Initialize(strPreProcessorDLLPath, nFields, nDepth);
        }
Exemple #5
0
        public Brain(MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, Phase phase)
        {
            m_mycaffe    = mycaffe;
            m_net        = mycaffe.GetInternalNet(phase);
            m_solver     = mycaffe.GetInternalSolver();
            m_properties = properties;
            m_random     = random;

            m_memData = m_net.FindLayer(LayerParameter.LayerType.MEMORYDATA, null) as MemoryDataLayer <T>;
            m_memLoss = m_net.FindLayer(LayerParameter.LayerType.MEMORY_LOSS, null) as MemoryLossLayer <T>;
            m_softmax = m_net.FindLayer(LayerParameter.LayerType.SOFTMAX, null) as SoftmaxLayer <T>;

            if (m_memData == null)
            {
                throw new Exception("Could not find the MemoryData Layer!");
            }

            if (m_memLoss == null)
            {
                throw new Exception("Could not find the MemoryLoss Layer!");
            }

            m_memData.OnDataPack += memData_OnDataPack;
            m_memLoss.OnGetLoss  += memLoss_OnGetLoss;

            m_blobDiscountedR     = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobPolicyGradient  = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobActionOneHot    = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobDiscountedR1    = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobPolicyGradient1 = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobActionOneHot1   = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobLoss            = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobAprobLogit      = new Blob <T>(mycaffe.Cuda, mycaffe.Log);

            if (m_softmax != null)
            {
                LayerParameter p = new LayerParameter(LayerParameter.LayerType.SOFTMAXCROSSENTROPY_LOSS);
                p.loss_weight.Add(1);
                p.loss_weight.Add(0);
                p.loss_param.normalization = LossParameter.NormalizationMode.NONE;
                m_softmaxCe = new SoftmaxCrossEntropyLossLayer <T>(mycaffe.Cuda, mycaffe.Log, p);
            }

            m_colAccumulatedGradients = m_net.learnable_parameters.Clone();
            m_colAccumulatedGradients.SetDiff(0);

            int nMiniBatch = mycaffe.CurrentProject.GetBatchSize(phase);

            if (nMiniBatch != 0)
            {
                m_nMiniBatch = nMiniBatch;
            }

            m_nMiniBatch = m_properties.GetPropertyAsInt("MiniBatch", m_nMiniBatch);
        }
Exemple #6
0
        /// <summary>
        /// Initializes a new custom trainer by loading the key-value pair of properties into the property set.
        /// </summary>
        /// <param name="strProperties">Specifies the key-value pair of properties each separated by ';'.  For example the expected
        /// format is 'key1'='value1';'key2'='value2';...</param>
        /// <param name="icallback">Specifies the parent callback.</param>
        public void Initialize(string strProperties, IXMyCaffeCustomTrainerCallback icallback)
        {
            m_icallback  = icallback;
            m_properties = new PropertySet(strProperties);
            m_nThreads   = m_properties.GetPropertyAsInt("Threads", 1);

            string strRewardType = m_properties.GetProperty("RewardType", false);

            if (strRewardType == null)
            {
                strRewardType = "VAL";
            }
            else
            {
                strRewardType = strRewardType.ToUpper();
            }

            if (strRewardType == "VAL" || strRewardType == "VALUE")
            {
                m_rewardType = REWARD_TYPE.VALUE;
            }
            else if (strRewardType == "AVE" || strRewardType == "AVERAGE")
            {
                m_rewardType = REWARD_TYPE.AVERAGE;
            }

            string strTrainerType = m_properties.GetProperty("TrainerType");

            switch (strTrainerType)
            {
            case "PG.SIMPLE":       // bare bones model (Sigmoid only)
                m_trainerType = TRAINER_TYPE.PG_SIMPLE;
                m_stage       = Stage.RL;
                break;

            case "PG.ST":           // single thread (Sigmoid and Softmax)
                m_trainerType = TRAINER_TYPE.PG_ST;
                m_stage       = Stage.RL;
                break;

            case "PG":
            case "PG.MT":           // multi-thread (Sigmoid and Softmax)
                m_trainerType = TRAINER_TYPE.PG_MT;
                m_stage       = Stage.RL;
                break;

            case "RNN.SIMPLE":
                m_trainerType = TRAINER_TYPE.RNN_SIMPLE;
                m_stage       = Stage.RNN;
                break;

            default:
                throw new Exception("Unknown trainer type '" + strTrainerType + "'!");
            }
        }
Exemple #7
0
 public CustomQuery2(string strParam = null)
 {
     if (strParam != null)
     {
         strParam = ParamPacker.UnPack(strParam);
         PropertySet ps = new PropertySet(strParam);
         m_strConnection = ps.GetProperty("Connection");
         m_strTable      = ps.GetProperty("Table");
         m_strField      = ps.GetProperty("Field");
         m_nEndIdx       = ps.GetPropertyAsInt("EndIdx", int.MaxValue);
     }
 }
Exemple #8
0
        /// <summary>
        /// Initialize the gym with the specified properties.
        /// </summary>
        /// <param name="log">Specifies the output log to use.</param>
        /// <param name="properties">Specifies the properties containing Gym specific initialization parameters.</param>
        /// <remarks>
        /// The ModelGym uses the following initialization properties.
        ///
        /// 'GpuID' - the GPU to run on.
        /// 'ModelDescription' - the model description of the model to use.
        /// 'Dataset' - the name of the dataset to use.
        /// 'Weights' - the model trained weights.
        /// 'CudaPath' - the path of the CudaDnnDLL to use.
        /// 'BatchSize' - the batch size used when running images through the model (default = 16).
        /// 'RecreateData' - when 'True' the data is re-run through the model, otherwise if already run the data is loaded from file (faster).
        /// </remarks>
        public void Initialize(Log log, PropertySet properties)
        {
            m_nGpuID        = properties.GetPropertyAsInt("GpuID");
            m_strModelDesc  = properties.GetProperty("ModelDescription");
            m_strDataset    = properties.GetProperty("Dataset");
            m_rgWeights     = properties.GetPropertyBlob("Weights");
            m_nBatchSize    = properties.GetPropertyAsInt("BatchSize", 16);
            m_bRecreateData = properties.GetPropertyAsBool("RecreateData", false);
            m_strProject    = properties.GetProperty("ProjectName");
            if (string.IsNullOrEmpty(m_strProject))
            {
                m_strProject = "default";
            }

            string strCudaPath = properties.GetProperty("CudaPath");

            SettingsCaffe s = new SettingsCaffe();

            s.GpuIds            = m_nGpuID.ToString();
            s.ImageDbLoadMethod = IMAGEDB_LOAD_METHOD.LOAD_ON_DEMAND_BACKGROUND;

            m_imgdb = new MyCaffeImageDatabase2(log);
            m_imgdb.InitializeWithDsName1(s, m_strDataset);
            m_ds = m_imgdb.GetDatasetByName(m_strDataset);

            SimpleDatum sd    = m_imgdb.QueryImage(m_ds.TrainingSource.ID, 0, IMGDB_LABEL_SELECTION_METHOD.NONE, IMGDB_IMAGE_SELECTION_METHOD.NONE);
            BlobShape   shape = new BlobShape(1, sd.Channels, sd.Height, sd.Width);

            if (m_evtCancel == null)
            {
                m_evtCancel = new CancelEvent();
            }

            m_mycaffe = new MyCaffeControl <float>(s, log, m_evtCancel, null, null, null, null, strCudaPath);
            m_mycaffe.LoadToRun(m_strModelDesc, m_rgWeights, shape);

            m_log = log;
        }
Exemple #9
0
        /// <summary>
        /// The constructor.
        /// </summary>
        /// <param name="nQueryCount">Specifies the size of each query.</param>
        /// <param name="dtStart">Specifies the state date used for data collection.</param>
        /// <param name="nTimeSpanInMs">Specifies the time increment used between each data item.</param>
        /// <param name="nSegmentSize">Specifies the amount of data to query on the back-end from each custom query.</param>
        /// <param name="nMaxCount">Specifies the maximum number of items to allow in memory.</param>
        /// <param name="strSchema">Specifies the database schema.</param>
        /// <param name="rgCustomQueries">Optionally, specifies any custom queries to add directly.</param>
        /// <remarks>
        /// The database schema defines the number of custom queries to use along with their names.  A simple key=value; list
        /// defines the streaming database schema using the following format:
        /// \code{.cpp}
        ///  "ConnectionCount=2;
        ///   Connection0_CustomQueryName=Test1;
        ///   Connection0_CustomQueryParam=param_string1
        ///   Connection1_CustomQueryName=Test2;
        ///   Connection1_CustomQueryParam=param_string2"
        /// \endcode
        /// Each param_string specifies the parameters of the custom query and may include the database connection string, database
        /// table, and database fields to query.
        /// </remarks>
        public MgrQueryTime(int nQueryCount, DateTime dtStart, int nTimeSpanInMs, int nSegmentSize, int nMaxCount, string strSchema, List <IXCustomQuery> rgCustomQueries)
        {
            m_colCustomQuery.Load();
            m_colData      = new DataItemCollection(nQueryCount);
            m_nQueryCount  = nQueryCount;
            m_nSegmentSize = nSegmentSize;

            m_schema = new PropertySet(strSchema);

            foreach (IXCustomQuery icustomquery in rgCustomQueries)
            {
                m_colCustomQuery.Add(icustomquery);
            }

            int nConnections = m_schema.GetPropertyAsInt("ConnectionCount");

            for (int i = 0; i < nConnections; i++)
            {
                string strConTag           = "Connection" + i.ToString();
                string strCustomQuery      = m_schema.GetProperty(strConTag + "_CustomQueryName");
                string strCustomQueryParam = m_schema.GetProperty(strConTag + "_CustomQueryParam");

                IXCustomQuery iqry = m_colCustomQuery.Find(strCustomQuery);
                if (iqry == null)
                {
                    throw new Exception("Could not find the custom query '" + strCustomQuery + "'!");
                }

                if (iqry.QueryType != CUSTOM_QUERY_TYPE.TIME)
                {
                    throw new Exception("The custom query '" + iqry.Name + "' does not support the 'CUSTOM_QUERY_TYPE.TIME'!");
                }

                DataQuery dq = new DataQuery(iqry.Clone(strCustomQueryParam), dtStart, TimeSpan.FromMilliseconds(nTimeSpanInMs), nSegmentSize, nMaxCount);
                m_colDataQuery.Add(dq);

                m_nFieldCount += (dq.FieldCount - 1);  // subtract each sync field.
            }

            m_nFieldCount += 1; // add the sync field
            m_colDataQuery.Start();

            m_evtCancel.Reset();
            m_taskConsolidate = Task.Factory.StartNew(new Action(consolidateThread));
            m_evtEnabled.Set();
            m_colData.WaitData(10000);
        }
Exemple #10
0
        /// <summary>
        /// The constructor.
        /// </summary>
        /// <param name="strSchema">Specifies the database schema.</param>
        /// <param name="rgCustomQueries">Optionally, specifies any custom queries to diretly add.</param>
        /// <remarks>
        /// The database schema defines the number of custom queries to use along with their names.  A simple key=value; list
        /// defines the streaming database schema using the following format:
        /// \code{.cpp}
        ///  "ConnectionCount=1;
        ///   Connection0_CustomQueryName=Test1;
        ///   Connection0_CustomQueryParam=param_string1
        /// \endcode
        /// Each param_string specifies the parameters of the custom query and may include the database connection string, database
        /// table, and database fields to query.
        /// </remarks>
        public MgrQueryGeneral(string strSchema, List <IXCustomQuery> rgCustomQueries)
        {
            m_colCustomQuery.Load();
            m_schema = new PropertySet(strSchema);

            m_colCustomQuery.Add(new StandardQueryTextFile());
            m_colCustomQuery.Add(new StandardQueryWAVFile());

            foreach (IXCustomQuery icustomquery in rgCustomQueries)
            {
                m_colCustomQuery.Add(icustomquery);
            }

            int nConnections = m_schema.GetPropertyAsInt("ConnectionCount");

            if (nConnections != 1)
            {
                throw new Exception("Currently, the general query type only supports 1 connection.");
            }

            string strConTag           = "Connection0";
            string strCustomQuery      = m_schema.GetProperty(strConTag + "_CustomQueryName");
            string strCustomQueryParam = m_schema.GetProperty(strConTag + "_CustomQueryParam");

            IXCustomQuery iqry = m_colCustomQuery.Find(strCustomQuery);

            if (iqry == null)
            {
                throw new Exception("Could not find the custom query '" + strCustomQuery + "'!");
            }

            if (iqry.QueryType != CUSTOM_QUERY_TYPE.BYTE && iqry.QueryType != CUSTOM_QUERY_TYPE.REAL_FLOAT && iqry.QueryType != CUSTOM_QUERY_TYPE.REAL_DOUBLE)
            {
                throw new Exception("The custom query '" + iqry.Name + "' must support the 'CUSTOM_QUERY_TYPE.BYTE' or 'CUSTOM_QUERY_TYPE.REAL_FLOAT' or 'CUSTOM_QUERY_TYPE.REAL_DOUBLE' query type!");
            }

            string strParam = ParamPacker.UnPack(strCustomQueryParam);

            m_iquery = iqry.Clone(strParam);
            m_iquery.Open();
        }
        public Brain(MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, Phase phase)
        {
            m_mycaffe    = mycaffe;
            m_net        = mycaffe.GetInternalNet(phase);
            m_solver     = mycaffe.GetInternalSolver();
            m_properties = properties;
            m_random     = random;

            m_memData = m_net.FindLayer(LayerParameter.LayerType.MEMORYDATA, null) as MemoryDataLayer <T>;
            m_memLoss = m_net.FindLayer(LayerParameter.LayerType.MEMORY_LOSS, null) as MemoryLossLayer <T>;
            SoftmaxLayer <T> softmax = m_net.FindLayer(LayerParameter.LayerType.SOFTMAX, null) as SoftmaxLayer <T>;

            if (softmax != null)
            {
                throw new Exception("The PG.SIMPLE trainer does not support the Softmax layer, use the 'PG.ST' or 'PG.MT' trainer instead.");
            }

            if (m_memData == null)
            {
                throw new Exception("Could not find the MemoryData Layer!");
            }

            if (m_memLoss == null)
            {
                throw new Exception("Could not find the MemoryLoss Layer!");
            }

            m_memLoss.OnGetLoss += memLoss_OnGetLoss;

            m_blobDiscountedR    = new Blob <T>(mycaffe.Cuda, mycaffe.Log);
            m_blobPolicyGradient = new Blob <T>(mycaffe.Cuda, mycaffe.Log);

            int nMiniBatch = mycaffe.CurrentProject.GetBatchSize(phase);

            if (nMiniBatch != 0)
            {
                m_nMiniBatch = nMiniBatch;
            }

            m_nMiniBatch = m_properties.GetPropertyAsInt("MiniBatch", m_nMiniBatch);
        }
Exemple #12
0
        public Brain(MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, IxTrainerCallbackRNN icallback, Phase phase, BucketCollection rgVocabulary, bool bUsePreloadData, string strRunProperties = null)
        {
            string strOutputBlob = null;

            if (strRunProperties != null)
            {
                m_runProperties = new PropertySet(strRunProperties);
            }

            m_icallback             = icallback;
            m_mycaffe               = mycaffe;
            m_properties            = properties;
            m_random                = random;
            m_rgVocabulary          = rgVocabulary;
            m_bUsePreloadData       = bUsePreloadData;
            m_nSolverSequenceLength = m_properties.GetPropertyAsInt("SequenceLength", -1);
            m_bDisableVocabulary    = m_properties.GetPropertyAsBool("DisableVocabulary", false);
            m_nThreads              = m_properties.GetPropertyAsInt("Threads", 1);
            m_dfScale               = m_properties.GetPropertyAsDouble("Scale", 1.0);

            if (m_nThreads > 1)
            {
                m_dataPool.Initialize(m_nThreads, icallback);
            }

            if (m_runProperties != null)
            {
                m_dfTemperature = Math.Abs(m_runProperties.GetPropertyAsDouble("Temperature", 0));
                if (m_dfTemperature > 1.0)
                {
                    m_dfTemperature = 1.0;
                }

                string strPhaseOnRun = m_runProperties.GetProperty("PhaseOnRun", false);
                switch (strPhaseOnRun)
                {
                case "RUN":
                    m_phaseOnRun = Phase.RUN;
                    break;

                case "TEST":
                    m_phaseOnRun = Phase.TEST;
                    break;

                case "TRAIN":
                    m_phaseOnRun = Phase.TRAIN;
                    break;
                }

                if (phase == Phase.RUN && m_phaseOnRun != Phase.NONE)
                {
                    if (m_phaseOnRun != Phase.RUN)
                    {
                        m_mycaffe.Log.WriteLine("Warning: Running on the '" + m_phaseOnRun.ToString() + "' network.");
                    }

                    strOutputBlob = m_runProperties.GetProperty("OutputBlob", false);
                    if (strOutputBlob == null)
                    {
                        throw new Exception("You must specify the 'OutputBlob' when Running with a phase other than RUN.");
                    }

                    strOutputBlob = Utility.Replace(strOutputBlob, '~', ';');

                    phase = m_phaseOnRun;
                }
            }

            m_net = mycaffe.GetInternalNet(phase);
            if (m_net == null)
            {
                mycaffe.Log.WriteLine("WARNING: Test net does not exist, set test_iteration > 0.  Using TRAIN phase instead.");
                m_net = mycaffe.GetInternalNet(Phase.TRAIN);
            }

            // Find the first LSTM layer to determine how to load the data.
            // NOTE: Only LSTM has a special loading order, other layers use the standard N, C, H, W ordering.
            LSTMLayer <T>       lstmLayer       = null;
            LSTMSimpleLayer <T> lstmSimpleLayer = null;

            foreach (Layer <T> layer1 in m_net.layers)
            {
                if (layer1.layer_param.type == LayerParameter.LayerType.LSTM)
                {
                    lstmLayer  = layer1 as LSTMLayer <T>;
                    m_lstmType = LayerParameter.LayerType.LSTM;
                    break;
                }
                else if (layer1.layer_param.type == LayerParameter.LayerType.LSTM_SIMPLE)
                {
                    lstmSimpleLayer = layer1 as LSTMSimpleLayer <T>;
                    m_lstmType      = LayerParameter.LayerType.LSTM_SIMPLE;
                    break;
                }
            }

            if (lstmLayer == null && lstmSimpleLayer == null)
            {
                throw new Exception("Could not find the required LSTM or LSTM_SIMPLE layer!");
            }

            if (m_phaseOnRun != Phase.NONE && m_phaseOnRun != Phase.RUN && strOutputBlob != null)
            {
                if ((m_blobOutput = m_net.FindBlob(strOutputBlob)) == null)
                {
                    throw new Exception("Could not find the 'Output' layer top named '" + strOutputBlob + "'!");
                }
            }

            if ((m_blobData = m_net.FindBlob("data")) == null)
            {
                throw new Exception("Could not find the 'Input' layer top named 'data'!");
            }

            if ((m_blobClip = m_net.FindBlob("clip")) == null)
            {
                throw new Exception("Could not find the 'Input' layer top named 'clip'!");
            }

            Layer <T> layer = m_net.FindLastLayer(LayerParameter.LayerType.INNERPRODUCT);

            m_mycaffe.Log.CHECK(layer != null, "Could not find an ending INNERPRODUCT layer!");

            if (!m_bDisableVocabulary)
            {
                m_nVocabSize = (int)layer.layer_param.inner_product_param.num_output;
                if (rgVocabulary != null)
                {
                    m_mycaffe.Log.CHECK_EQ(m_nVocabSize, rgVocabulary.Count, "The vocabulary count = '" + rgVocabulary.Count.ToString() + "' and last inner product output count = '" + m_nVocabSize.ToString() + "' - these do not match but they should!");
                }
            }

            if (m_lstmType == LayerParameter.LayerType.LSTM)
            {
                m_nSequenceLength = m_blobData.shape(0);
                m_nBatchSize      = m_blobData.shape(1);
            }
            else
            {
                m_nBatchSize      = (int)lstmSimpleLayer.layer_param.lstm_simple_param.batch_size;
                m_nSequenceLength = m_blobData.shape(0) / m_nBatchSize;

                if (phase == Phase.RUN)
                {
                    m_nBatchSize = 1;

                    List <int> rgNewShape = new List <int>()
                    {
                        m_nSequenceLength, 1
                    };
                    m_blobData.Reshape(rgNewShape);
                    m_blobClip.Reshape(rgNewShape);
                    m_net.Reshape();
                }
            }

            m_mycaffe.Log.CHECK_EQ(m_nSequenceLength, m_blobData.num, "The data num must equal the sequence lengh of " + m_nSequenceLength.ToString());

            m_rgDataInput = new T[m_nSequenceLength * m_nBatchSize];

            T[] rgClipInput = new T[m_nSequenceLength * m_nBatchSize];
            m_mycaffe.Log.CHECK_EQ(rgClipInput.Length, m_blobClip.count(), "The clip count must equal the sequence length * batch size: " + rgClipInput.Length.ToString());
            m_tZero = (T)Convert.ChangeType(0, typeof(T));
            m_tOne  = (T)Convert.ChangeType(1, typeof(T));

            for (int i = 0; i < rgClipInput.Length; i++)
            {
                if (m_lstmType == LayerParameter.LayerType.LSTM)
                {
                    rgClipInput[i] = (i < m_nBatchSize) ? m_tZero : m_tOne;
                }
                else
                {
                    rgClipInput[i] = (i % m_nSequenceLength == 0) ? m_tZero : m_tOne;
                }
            }

            m_blobClip.mutable_cpu_data = rgClipInput;

            if (phase != Phase.RUN)
            {
                m_solver                      = mycaffe.GetInternalSolver();
                m_solver.OnStart             += m_solver_OnStart;
                m_solver.OnTestStart         += m_solver_OnTestStart;
                m_solver.OnTestingIteration  += m_solver_OnTestingIteration;
                m_solver.OnTrainingIteration += m_solver_OnTrainingIteration;

                if ((m_blobLabel = m_net.FindBlob("label")) == null)
                {
                    throw new Exception("Could not find the 'Input' layer top named 'label'!");
                }

                m_nSequenceLengthLabel = m_blobLabel.count(0, 2);
                m_rgLabelInput         = new T[m_nSequenceLengthLabel];
                m_mycaffe.Log.CHECK_EQ(m_rgLabelInput.Length, m_blobLabel.count(), "The label count must equal the label sequence length * batch size: " + m_rgLabelInput.Length.ToString());
                m_mycaffe.Log.CHECK(m_nSequenceLengthLabel == m_nSequenceLength * m_nBatchSize || m_nSequenceLengthLabel == 1, "The label sqeuence length must be 1 or equal the length of the sequence: " + m_nSequenceLength.ToString());
            }
        }
Exemple #13
0
        /// <summary>
        /// Initialize the gym with the specified properties.
        /// </summary>
        /// <param name="log">Specifies the output log to use.</param>
        /// <param name="properties">Specifies the properties containing Gym specific initialization parameters.</param>
        /// <remarks>
        /// The AtariGym uses the following initialization properties.
        ///   GameRom='path to .rom file'
        /// </remarks>
        public void Initialize(Log log, PropertySet properties)
        {
            m_log = log;

            if (m_ale != null)
            {
                m_ale.Shutdown();
                m_ale = null;
            }

            m_ale = new ALE();
            m_ale.Initialize();
            m_ale.EnableDisplayScreen       = false;
            m_ale.EnableSound               = false;
            m_ale.EnableColorData           = properties.GetPropertyAsBool("EnableColor", false);
            m_ale.EnableRestrictedActionSet = true;
            m_ale.EnableColorAveraging      = true;
            m_ale.AllowNegativeRewards      = properties.GetPropertyAsBool("AllowNegativeRewards", false);
            m_ale.EnableTerminateOnRallyEnd = properties.GetPropertyAsBool("TerminateOnRallyEnd", false);
            m_ale.RandomSeed = (int)DateTime.Now.Ticks;
            m_ale.RepeatActionProbability = 0.0f; // disable action repeatability

            if (properties == null)
            {
                throw new Exception("The properties must be specified with the 'GameROM' set the the Game ROM file path.");
            }

            string strROM = properties.GetProperty("GameROM");

            if (strROM.Contains('~'))
            {
                strROM = Utility.Replace(strROM, '~', ' ');
            }
            else
            {
                strROM = Utility.Replace(strROM, "[sp]", ' ');
            }

            if (!File.Exists(strROM))
            {
                throw new Exception("Could not find the game ROM file specified '" + strROM + "'!");
            }

            if (properties.GetPropertyAsBool("UseGrayscale", false))
            {
                m_ct = COLORTYPE.CT_GRAYSCALE;
            }

            m_bPreprocess    = properties.GetPropertyAsBool("Preprocess", true);
            m_bForceGray     = properties.GetPropertyAsBool("ActionForceGray", false);
            m_bEnableNumSkip = properties.GetPropertyAsBool("EnableNumSkip", true);
            m_nFrameSkip     = properties.GetPropertyAsInt("FrameSkip", -1);

            m_ale.Load(strROM);
            m_rgActionsRaw = m_ale.ActionSpace;
            m_random       = new CryptoRandom();
            m_rgFrameSkip  = new List <int>();

            if (m_nFrameSkip < 0)
            {
                for (int i = 2; i < 5; i++)
                {
                    m_rgFrameSkip.Add(i);
                }
            }
            else
            {
                m_rgFrameSkip.Add(m_nFrameSkip);
            }

            m_rgActions.Add(ACTION.ACT_PLAYER_A_LEFT.ToString(), (int)ACTION.ACT_PLAYER_A_LEFT);
            m_rgActions.Add(ACTION.ACT_PLAYER_A_RIGHT.ToString(), (int)ACTION.ACT_PLAYER_A_RIGHT);

            if (!properties.GetPropertyAsBool("EnableBinaryActions", false))
            {
                m_rgActions.Add(ACTION.ACT_PLAYER_A_FIRE.ToString(), (int)ACTION.ACT_PLAYER_A_FIRE);
            }

            m_rgActionSet = m_rgActions.ToList();

            Reset(false);
        }
        /// <summary>
        /// The constructor.
        /// </summary>
        /// <param name="mycaffe">Specifies the instance of MyCaffe assoiated with the open project - when using more than one Brain, this is the master project.</param>
        /// <param name="properties">Specifies the properties passed into the trainer.</param>
        /// <param name="random">Specifies the random number generator used.</param>
        /// <param name="phase">Specifies the phase under which to run.</param>
        public Brain(MyCaffeControl <T> mycaffe, PropertySet properties, CryptoRandom random, Phase phase)
        {
            m_mycaffe    = mycaffe;
            m_solver     = mycaffe.GetInternalSolver();
            m_netOutput  = mycaffe.GetInternalNet(phase);
            m_netTarget  = new Net <T>(m_mycaffe.Cuda, m_mycaffe.Log, m_netOutput.net_param, m_mycaffe.CancelEvent, null, phase);
            m_properties = properties;
            m_random     = random;

            Blob <T> data = m_netOutput.blob_by_name("data");

            if (data == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected input 'data' blob!");
            }

            m_nFramesPerX = data.channels;
            m_nBatchSize  = data.num;

            Blob <T> logits = m_netOutput.blob_by_name("logits");

            if (logits == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected input 'logits' blob!");
            }

            m_nActionCount = logits.channels;

            m_transformer = m_mycaffe.DataTransformer;
            if (m_transformer == null)
            {
                TransformationParameter trans_param = new TransformationParameter();
                int nC = m_mycaffe.CurrentProject.Dataset.TrainingSource.ImageChannels;
                int nH = m_mycaffe.CurrentProject.Dataset.TrainingSource.ImageHeight;
                int nW = m_mycaffe.CurrentProject.Dataset.TrainingSource.ImageWidth;
                m_transformer = new DataTransformer <T>(m_mycaffe.Cuda, m_mycaffe.Log, trans_param, phase, nC, nH, nW);
            }

            for (int i = 0; i < m_nFramesPerX; i++)
            {
                m_transformer.param.mean_value.Add(255 / 2); // center each frame
            }

            m_transformer.param.scale = 1.0 / 255; // normalize
            m_transformer.Update();

            m_blobActions        = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);
            m_blobQValue         = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobNextQValue     = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobExpectedQValue = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobDone           = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);
            m_blobLoss           = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log);
            m_blobWeights        = new Blob <T>(m_mycaffe.Cuda, m_mycaffe.Log, false);

            m_fGamma = (float)properties.GetPropertyAsDouble("Gamma", m_fGamma);

            m_memLoss = m_netOutput.FindLastLayer(LayerParameter.LayerType.MEMORY_LOSS) as MemoryLossLayer <T>;
            if (m_memLoss == null)
            {
                m_mycaffe.Log.FAIL("Missing the expected MEMORY_LOSS layer!");
            }

            double?dfRate = mycaffe.CurrentProject.GetSolverSettingAsNumeric("base_lr");

            if (dfRate.HasValue)
            {
                m_dfLearningRate = dfRate.Value;
            }

            m_nMiniBatch = m_properties.GetPropertyAsInt("MiniBatch", m_nMiniBatch);
            m_bUseAcceleratedTraining = properties.GetPropertyAsBool("UseAcceleratedTraining", false);

            if (m_nMiniBatch > 1)
            {
                m_colAccumulatedGradients = m_netOutput.learnable_parameters.Clone();
                m_colAccumulatedGradients.SetDiff(0);
            }
        }
Exemple #15
0
        /// <summary>
        /// Step the gym one step in the data.
        /// </summary>
        /// <param name="nAction">Specifies the action to run on the gym.</param>
        /// <param name="bGetLabel">Not used.</param>
        /// <param name="extraProp">Optionally, specifies extra properties.</param>
        /// <returns>A tuple containing state data, the reward, and the done state is returned.</returns>
        public Tuple <State, double, bool> Step(int nAction, bool bGetLabel = false, PropertySet extraProp = null)
        {
            DataState       data   = new DataState();
            ScoreCollection scores = null;

            if (ActivePhase == Phase.RUN)
            {
                if (extraProp == null)
                {
                    throw new Exception("The extra properties are needed when querying data during the RUN phase.");
                }

                int    nDataCount   = extraProp.GetPropertyAsInt("DataCountRequested");
                string strStartTime = extraProp.GetProperty("SeedTime");

                int      nStartIdx = m_scores.Count - nDataCount;
                DateTime dt;
                if (DateTime.TryParse(strStartTime, out dt))
                {
                    nStartIdx = m_scores.FindIndexAt(dt, nDataCount);
                }

                scores = m_scores.CopyFrom(nStartIdx, nDataCount);
            }
            else
            {
                int nCount = 0;

                m_scores = load(out m_nDim, out m_nWidth);

                if (m_bRecreateData || m_scores.Count != m_ds.TrainingSource.ImageCount)
                {
                    Stopwatch sw = new Stopwatch();
                    sw.Start();

                    m_scores = new ScoreCollection();

                    while (m_nCurrentIdx < m_ds.TrainingSource.ImageCount)
                    {
                        // Query images sequentially by index in batches
                        List <SimpleDatum> rgSd = new List <SimpleDatum>();

                        for (int i = 0; i < m_nBatchSize; i++)
                        {
                            SimpleDatum sd = m_imgdb.QueryImage(m_ds.TrainingSource.ID, m_nCurrentIdx + i, IMGDB_LABEL_SELECTION_METHOD.NONE, IMGDB_IMAGE_SELECTION_METHOD.NONE);
                            rgSd.Add(sd);
                            nCount++;

                            if (nCount == m_ds.TrainingSource.ImageCount)
                            {
                                break;
                            }
                        }

                        List <ResultCollection> rgRes = m_mycaffe.Run(rgSd, ref m_blobWork);

                        if (m_nWidth == 0)
                        {
                            m_nWidth = rgRes[0].ResultsOriginal.Count;
                            m_nDim   = rgRes[0].ResultsOriginal.Count * 2;
                        }

                        // Fill SimpleDatum with the ordered label,score pairs starting with the detected label.
                        for (int i = 0; i < rgRes.Count; i++)
                        {
                            m_scores.Add(new Score(rgSd[i].TimeStamp, rgSd[i].Index, rgRes[i]));
                            m_nCurrentIdx++;
                        }

                        if (sw.Elapsed.TotalMilliseconds > 1000)
                        {
                            m_log.Progress = (double)m_nCurrentIdx / (double)m_ds.TrainingSource.ImageCount;
                            m_log.WriteLine("Running model on image " + m_nCurrentIdx.ToString() + " of " + m_ds.TrainingSource.ImageCount.ToString() + " of '" + m_strDataset + "' dataset.");

                            if (m_evtCancel.WaitOne(0))
                            {
                                return(null);
                            }
                        }
                    }

                    save(m_nDim, m_nWidth, m_scores);
                }
                else
                {
                    m_nCurrentIdx = m_scores.Count;
                }

                scores = m_scores;
            }

            float[]     rgfRes = scores.Data;
            SimpleDatum sdRes  = new SimpleDatum(scores.Count, m_nWidth, 2, rgfRes, 0, rgfRes.Length);

            data.SetData(sdRes);
            m_nCurrentIdx = 0;

            return(new Tuple <State, double, bool>(data, 0, false));
        }