public SpectrumFilter(SrmDocument document, MsDataFileUri msDataFileUri, IFilterInstrumentInfo instrumentInfo,
            IRetentionTimePredictor retentionTimePredictor = null, bool firstPass = false)
        {
            _fullScan = document.Settings.TransitionSettings.FullScan;
            _instrument = document.Settings.TransitionSettings.Instrument;
            _acquisitionMethod = _fullScan.AcquisitionMethod;
            if (instrumentInfo != null)
                _isWatersFile = instrumentInfo.IsWatersFile;
            IsFirstPass = firstPass;

            var comparer = PrecursorTextId.PrecursorTextIdComparerInstance;
            var dictPrecursorMzToFilter = new SortedDictionary<PrecursorTextId, SpectrumFilterPair>(comparer);

            if (EnabledMs || EnabledMsMs)
            {
                if (EnabledMs)
                {
                    _isHighAccMsFilter = !Equals(_fullScan.PrecursorMassAnalyzer,
                        FullScanMassAnalyzerType.qit);

                    if (!firstPass)
                    {
                        var key = new PrecursorTextId(0, null, ChromExtractor.summed);  // TIC
                        dictPrecursorMzToFilter.Add(key, new SpectrumFilterPair(key, PeptideDocNode.UNKNOWN_COLOR, dictPrecursorMzToFilter.Count,
                            _instrument.MinTime, _instrument.MaxTime, null, null, 0, _isHighAccMsFilter, _isHighAccProductFilter));
                        key = new PrecursorTextId(0, null, ChromExtractor.base_peak);   // BPC
                        dictPrecursorMzToFilter.Add(key, new SpectrumFilterPair(key, PeptideDocNode.UNKNOWN_COLOR, dictPrecursorMzToFilter.Count,
                            _instrument.MinTime, _instrument.MaxTime, null, null, 0, _isHighAccMsFilter, _isHighAccProductFilter));
                    }
                }
                if (EnabledMsMs)
                {
                    _isHighAccProductFilter = !Equals(_fullScan.ProductMassAnalyzer,
                        FullScanMassAnalyzerType.qit);

                    if (_fullScan.AcquisitionMethod == FullScanAcquisitionMethod.DIA &&
                        _fullScan.IsolationScheme.IsAllIons)
                    {
                        if (instrumentInfo != null)
                        {
                            _isWatersMse = _isWatersFile;
                            _isAgilentMse = instrumentInfo.IsAgilentFile;
                        }
                        _mseLevel = 1;
                    }
                }

                Func<double, double> calcWindowsQ1 = _fullScan.GetPrecursorFilterWindow;
                Func<double, double> calcWindowsQ3 = _fullScan.GetProductFilterWindow;
                _minTime = _instrument.MinTime;
                _maxTime = _instrument.MaxTime;
                bool canSchedule = CanSchedule(document, retentionTimePredictor);
                // TODO: Figure out a way to turn off time sharing on first SIM scan so that
                //       times can be shared for MS1 without SIM scans
                _isSharedTime = !canSchedule;

                // If we're using bare measured drift times from spectral libraries, go get those now
                var libraryIonMobilityInfo = document.Settings.PeptideSettings.Prediction.UseLibraryDriftTimes
                    ? document.Settings.GetIonMobilities(msDataFileUri)
                    : null;

                foreach (var nodePep in document.Molecules)
                {
                    if (firstPass && !retentionTimePredictor.IsFirstPassPeptide(nodePep))
                        continue;

                    foreach (TransitionGroupDocNode nodeGroup in nodePep.Children)
                    {
                        if (nodeGroup.Children.Count == 0)
                            continue;

                        double? minTime = _minTime, maxTime = _maxTime;
                        double? startDriftTimeMsec = null, endDriftTimeMsec = null;
                        double windowDT;
                        double highEnergyDriftTimeOffsetMsec = 0;
                        DriftTimeInfo centerDriftTime = document.Settings.PeptideSettings.Prediction.GetDriftTime(
                            nodePep, nodeGroup, libraryIonMobilityInfo, out windowDT);
                        if (centerDriftTime.DriftTimeMsec(false).HasValue)
                        {
                            startDriftTimeMsec = centerDriftTime.DriftTimeMsec(false) - windowDT / 2; // Get the low energy drift time
                            endDriftTimeMsec = startDriftTimeMsec + windowDT;
                            highEnergyDriftTimeOffsetMsec = centerDriftTime.HighEnergyDriftTimeOffsetMsec;
                        }

                        if (canSchedule)
                        {
                            if (RetentionTimeFilterType.scheduling_windows == _fullScan.RetentionTimeFilterType)
                            {
                                double? centerTime = null;
                                double windowRT = 0;
                                if (retentionTimePredictor != null)
                                {
                                    centerTime = retentionTimePredictor.GetPredictedRetentionTime(nodePep);
                                }
                                else
                                {
                                    var prediction = document.Settings.PeptideSettings.Prediction;
                                    if (prediction.RetentionTime == null || !prediction.RetentionTime.IsAutoCalculated)
                                    {
                                        centerTime = document.Settings.PeptideSettings.Prediction.PredictRetentionTimeForChromImport(
                                            document, nodePep, nodeGroup, out windowRT);
                                    }
                                }
                                // Force the center time to be at least zero
                                if (centerTime.HasValue && centerTime.Value < 0)
                                    centerTime = 0;
                                if (_fullScan.RetentionTimeFilterLength != 0)
                                {
                                    windowRT = _fullScan.RetentionTimeFilterLength * 2;
                                }
                                if (centerTime != null)
                                {
                                    double startTime = centerTime.Value - windowRT / 2;
                                    double endTime = startTime + windowRT;
                                    minTime = Math.Max(minTime ?? 0, startTime);
                                    maxTime = Math.Min(maxTime ?? double.MaxValue, endTime);
                                }
                            }
                            else if (RetentionTimeFilterType.ms2_ids == _fullScan.RetentionTimeFilterType)
                            {
                                var times = document.Settings.GetBestRetentionTimes(nodePep, msDataFileUri);
                                if (times.Length > 0)
                                {
                                    minTime = Math.Max(minTime ?? 0, times.Min() - _fullScan.RetentionTimeFilterLength);
                                    maxTime = Math.Min(maxTime ?? double.MaxValue, times.Max() + _fullScan.RetentionTimeFilterLength);
                                }
                            }
                        }

                        SpectrumFilterPair filter;
                        string textId = nodePep.RawTextId; // Modified Sequence for peptides, or some other string for custom ions
                        double mz = nodeGroup.PrecursorMz;
                        var key = new PrecursorTextId(mz, textId, ChromExtractor.summed);
                        if (!dictPrecursorMzToFilter.TryGetValue(key, out filter))
                        {
                            filter = new SpectrumFilterPair(key, nodePep.Color, dictPrecursorMzToFilter.Count, minTime, maxTime,
                                startDriftTimeMsec, endDriftTimeMsec, highEnergyDriftTimeOffsetMsec,
                                _isHighAccMsFilter, _isHighAccProductFilter);
                            dictPrecursorMzToFilter.Add(key, filter);
                        }

                        if (!EnabledMs)
                        {
                            filter.AddQ3FilterValues(from TransitionDocNode nodeTran in nodeGroup.Children
                                                     select nodeTran.Mz, calcWindowsQ3);
                        }
                        else if (!EnabledMsMs)
                        {
                            filter.AddQ1FilterValues(GetMS1MzValues(nodeGroup), calcWindowsQ1);
                        }
                        else
                        {
                            filter.AddQ1FilterValues(GetMS1MzValues(nodeGroup), calcWindowsQ1);
                            filter.AddQ3FilterValues(from TransitionDocNode nodeTran in nodeGroup.Children
                                                     where !nodeTran.IsMs1
                                                     select nodeTran.Mz, calcWindowsQ3);
                        }
                    }
                }
                _filterMzValues = dictPrecursorMzToFilter.Values.ToArray();

                var listChromKeyFilterIds = new List<ChromKey>();
                foreach (var spectrumFilterPair in _filterMzValues)
                {
                    spectrumFilterPair.AddChromKeys(listChromKeyFilterIds);
                }
                _productChromKeys = listChromKeyFilterIds.ToArray();

                // Sort a copy of the filter pairs by maximum retention time so that we can detect when
                // filters are no longer active.
                _filterRTValues = new SpectrumFilterPair[_filterMzValues.Length];
                Array.Copy(_filterMzValues, _filterRTValues, _filterMzValues.Length);
                Array.Sort(_filterRTValues, CompareByRT);
            }

            InitRTLimits();
        }
        public void ProcessExtractedSpectrum(float time, SpectraChromDataProvider.Collectors chromatograms, int scanId, ExtractedSpectrum spectrum, Action<int, ChromCollector> addCollector)
        {
            double precursorMz = spectrum.PrecursorMz;
            double? ionMobilityValue = spectrum.IonMobilityValue;
            double ionMobilityExtractionWidth = spectrum.IonMobilityExtractionWidth;
            string textId = spectrum.TextId;
            ChromExtractor extractor = spectrum.Extractor;
            int ionScanCount = spectrum.ProductFilters.Length;
            ChromDataCollector collector;
            var key = new PrecursorTextId(precursorMz, textId, extractor);
            int index = spectrum.FilterIndex;
            while (PrecursorCollectorMap.Count <= index)
                PrecursorCollectorMap.Add(null);
            if (PrecursorCollectorMap[index] != null)
                collector = PrecursorCollectorMap[index].Item2;
            else
            {
                collector = new ChromDataCollector(textId, precursorMz, ionMobilityValue, ionMobilityExtractionWidth, index, IsGroupedTime);
                PrecursorCollectorMap[index] = new Tuple<PrecursorTextId, ChromDataCollector>(key, collector);
            }

            int ionCount = collector.ProductIntensityMap.Count;
            if (ionCount == 0)
                ionCount = ionScanCount;

            // Add new time to the shared time list if not SRM, which doesn't share times, or
            // the times are shared with the entire set, as in MS1
            int lenTimes = collector.TimeCount;
            if (IsGroupedTime)
            {
                // Shared scan ids and times do not belong to a group.
                collector.AddScanId(scanId);
                collector.AddGroupedTime(time);
                lenTimes = collector.GroupedTimesCollector.Count;
            }

            // Add intensity values to ion scans

            for (int j = 0; j < ionScanCount; j++)
            {
                var productFilter = spectrum.ProductFilters[j];
                var chromIndex = chromatograms.ProductFilterIdToId(productFilter.FilterId);

                ChromCollector chromCollector;
                if (!collector.ProductIntensityMap.TryGetValue(productFilter, out chromCollector))
                {
                    chromCollector = new ChromCollector(chromIndex, IsSingleTime, spectrum.MassErrors != null);
                    // If more than a single ion scan, add any zeros necessary
                    // to make this new chromatogram have an entry for each time.
                    if (ionScanCount > 1 && lenTimes > 1)
                        chromCollector.FillIntensities(chromIndex, lenTimes - 1, _blockWriter);
                    collector.ProductIntensityMap.Add(productFilter, chromCollector);

                    if (addCollector != null)
                        addCollector(productFilter.FilterId, chromCollector);
                }
                if (IsSingleTime)
                    chromCollector.AddTime(chromIndex, time, _blockWriter);
                if (spectrum.MassErrors != null)
                    chromCollector.AddMassError(chromIndex, spectrum.MassErrors[j], _blockWriter);
                chromCollector.AddIntensity(chromIndex, spectrum.Intensities[j], _blockWriter);
            }

            // Add data for chromatogram graph.
            if (_allChromData != null && spectrum.PrecursorMz != 0) // Exclude TIC and BPC
                _allChromData.Add(spectrum.TextId, spectrum.PeptideColor, spectrum.FilterIndex, time, spectrum.Intensities);

            // If this was a multiple ion scan and not all ions had measurements,
            // make sure missing ions have zero intensities in the chromatogram.
            if (ionScanCount > 1 &&
                (ionCount != ionScanCount || ionCount != collector.ProductIntensityMap.Count))
            {
                // Times should have gotten one longer
                foreach (var item in collector.ProductIntensityMap)
                {
                    var productFilter = item.Key;
                    var chromCollector = item.Value;
                    var chromIndex = chromatograms.ProductFilterIdToId(productFilter.FilterId);
                    if (chromCollector.Count < lenTimes)
                        chromCollector.AddIntensity(chromIndex, 0, _blockWriter);
                }
            }
        }
        public IsotopeDistInfo(MassDistribution massDistribution,
            double monoisotopicMass,
            bool isMassH, // Is monoisotopicMass M+H, or just M as in small molecule use?
            int charge,
            Func<double, double> calcFilterWindow,
            double massResolution,
            double minimumAbundance)
        {
            _monoisotopicMass = monoisotopicMass;
            _charge = charge;
            _isMassH = isMassH;

            // Get peak center of mass values for the given resolution
            var q1FilterValues = MassDistribution.NewInstance(massDistribution, massResolution, 0).Keys.ToList();
            // Find the monoisotopic m/z and make sure it is exactly the expected number
            double monoMz = isMassH ? SequenceMassCalc.GetMZ(_monoisotopicMass, _charge) : BioMassCalc.CalculateIonMz(_monoisotopicMass, _charge);
            double monoMzDist = monoMz;
            int monoMassIndex = 0;
            for (int i = 0; i < q1FilterValues.Count; i++)
            {
                double peakCenterMz = q1FilterValues[i];
                double filterWindow = calcFilterWindow(peakCenterMz);
                double startMz = peakCenterMz - filterWindow/2;
                double endMz = startMz + filterWindow;
                if (startMz < monoMz && monoMz < endMz)
                {
                    monoMzDist = q1FilterValues[i];
                    q1FilterValues[i] = monoMz;
                    monoMassIndex = i;
                    break;
                }
            }
            // Insert a M-1 peak, even if it is not expected in the isotope mass distribution
            if (monoMassIndex == 0 && q1FilterValues.Count > 1)
            {
                // Use the delta from the original distribution monoMz to the next peak
                q1FilterValues.Insert(0, monoMz + monoMzDist - q1FilterValues[1]);
                monoMassIndex++;
            }

            if (!q1FilterValues.Any())  // As is small molecule docs with mz values only, no formulas
                return;

            // Use the filtering algorithm that will be used on real data to determine the
            // expected proportions of the mass distribution that will end up filtered into
            // peaks
            // CONSIDER: Mass accuracy information is not calculated here
            var key = new PrecursorTextId(q1FilterValues[monoMassIndex], null, ChromExtractor.summed);
            var filter = new SpectrumFilterPair(key, PeptideDocNode.UNKNOWN_COLOR, 0, null, null, null, null, 0, false, false);
            filter.AddQ1FilterValues(q1FilterValues, calcFilterWindow);

            var expectedSpectrum = filter.FilterQ1SpectrumList(new[] { new MsDataSpectrum
            { Mzs = massDistribution.Keys.ToArray(), Intensities = massDistribution.Values.ToArray() } });

            int startIndex = expectedSpectrum.Intensities.IndexOf(inten => inten >= minimumAbundance);
            if (startIndex == -1)
            {
                throw new InvalidOperationException(
                    string.Format(Resources.IsotopeDistInfo_IsotopeDistInfo_Minimum_abundance__0__too_high,
                                  minimumAbundance));
            }
            // Always include the M-1 peak, even if it is expected to have zero intensity
            if (startIndex > monoMassIndex - 1)
                startIndex = monoMassIndex - 1;
            if (startIndex < 0)
                startIndex = 0;
            int endIndex = expectedSpectrum.Intensities.LastIndexOf(inten => inten >= minimumAbundance) + 1;
            int countPeaks = endIndex - startIndex;
            var listProportionIndices = new List<KeyValuePair<float, int>>(countPeaks);
            for (int i = 0; i < countPeaks; i++)
            {
                listProportionIndices.Add(new KeyValuePair<float, int>(
                    expectedSpectrum.Intensities[i + startIndex], i));
            }
            // Sort proportions descending.
            listProportionIndices.Sort((p1, p2) => Comparer.Default.Compare(p2.Key, p1.Key));

            // Set proportions and ranks back in the original locations
            var expectedProportionRanks = new KeyValuePair<float, int>[countPeaks];
            for (int i = 0; i < countPeaks; i++)
            {
                expectedProportionRanks[listProportionIndices[i].Value] =
                    new KeyValuePair<float, int>(listProportionIndices[i].Key, i + 1);
            }

            // TODO: Can this be discarded?
            // MassDistribution = massDistribution;

            MonoMassIndex = monoMassIndex - startIndex;

            // Find the base peak and fill in the masses and proportions
            var expectedPeaks = new List<MzRankProportion>();
            for (int i = 0; i < countPeaks; i++)
            {
                float expectedProportion = expectedProportionRanks[i].Key;
                int rank = expectedProportionRanks[i].Value;
                expectedPeaks.Add(new MzRankProportion(q1FilterValues[i + startIndex], rank, expectedProportion));
                if (expectedProportion > expectedProportionRanks[BaseMassIndex].Key)
                    BaseMassIndex = i;
            }
            ExpectedPeaks = expectedPeaks;
        }