Exemple #1
0
        public Bitmap DrawPoints(Color color)
        {
            Bitmap       bmp = new Bitmap(n, n, PixelFormat.Format24bppRgb);
            PointsMarker pm  = new PointsMarker(Points, color);

            return(pm.Apply(bmp));
        }
Exemple #2
0
        public void FindTest()
        {
            List <IntPoint> contour = new List <IntPoint>();

            int max = 100;

            for (int i = 0; i < max; i++)
            {
                add(contour, i, max);
            }

            for (int i = 0; i < max; i++)
            {
                add(contour, max, i);
            }

            for (int i = 0; i < max; i++)
            {
                add(contour, 0, i);
            }

            for (int i = 0; i < max / 2; i++)
            {
                add(contour, i, i);
            }

            for (int i = 0; i < max / 2; i++)
            {
                add(contour, i + max / 2, max / 2 - i);
            }

            PointsMarker marker = new PointsMarker(contour);
            var          bitmap = AForge.Imaging.Image.CreateGrayscaleImage(max + 1, max + 1);

            bitmap = marker.Apply(bitmap);
            // ImageBox.Show(bitmap);

            GrahamConvexHull       graham      = new GrahamConvexHull();
            List <IntPoint>        hull        = graham.FindHull(contour);
            ConvexHullDefects      hullDefects = new ConvexHullDefects(10);
            List <ConvexityDefect> defects     = hullDefects.FindDefects(contour, hull);

            Assert.AreEqual(1, defects.Count);
            Assert.AreEqual(99, defects[0].Depth);
        }
Exemple #3
0
        public void ApplyTest1()
        {
            string basePath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "watershed");

            Directory.CreateDirectory(basePath);

            Bitmap shapes = Accord.Imaging.Image.Clone(Resources.water);

            shapes.Save(Path.Combine(basePath, "shapes.jpg"));

            var    bw     = new BinaryWatershed();
            Bitmap result = bw.Apply(shapes);

            Assert.AreEqual(746, result.Width);
            Assert.AreEqual(643, result.Height);
            Assert.AreEqual(PixelFormat.Format8bppIndexed, result.PixelFormat);

            Assert.AreEqual(9, bw.MaxPoints.Count);

            string strX = bw.MaxPoints.Select(i => i.X).ToArray().ToCSharp();
            string strY = bw.MaxPoints.Select(i => i.Y).ToArray().ToCSharp();

            double[] x = new double[] { 310, 546, 136, 254, 429, 612, 398, 345, 498 };
            double[] y = new double[] { 436, 153, 392, 201, 336, 339, 242, 183, 319 };

            Assert.AreEqual(x, bw.MaxPoints.Select(i => i.X).ToArray());
            Assert.AreEqual(y, bw.MaxPoints.Select(i => i.Y).ToArray());

            result.Save(Path.Combine(basePath, "watershed.jpg"));

            GrayscaleToRGB toRGB = new GrayscaleToRGB();

            result = toRGB.Apply(result);

            PointsMarker marker = new PointsMarker(Color.Red, 5);

            marker.Points = bw.MaxPoints;
            Bitmap marked = marker.Apply(result);

            marked.Save(Path.Combine(basePath, "watershed-marks.jpg"));

            Assert.IsNotNull(result);
            Assert.IsNotNull(marked);
        }
Exemple #4
0
        public static Bitmap MarkPoints(Bitmap bmp, List <IntPoint> points, Color color)
        {
            PointsMarker pm = new PointsMarker(points, color);

            return(pm.Apply(bmp));
        }
        /// <summary>
        /// takes the video and process it two frames at a time to calculate
        /// optical flow features and save them on the disk.
        /// </summary>
        /// <param name="vid">Path of the video on the disk.</param>
        /// <param name="save_path">Path to save the features on the disk.</param>
        /// <returns></returns>
        public void Extract_Featurers2(String vid, String save_path)
        {
            int mm = 0;

            try
            {
                mag          = new Mat();
                ang          = new Mat();
                frame        = new Mat();
                prev_frame   = new Mat();
                cap          = new VideoCapture(vid);
                total_frames = Convert.ToInt32(cap.GetCaptureProperty(CapProp.FrameCount));
                F_L          = new List <int>();


                frame      = cap.QueryFrame();
                prev_frame = frame;

                Console.WriteLine(total_frames);
            }
            catch (NullReferenceException except)
            {
                Console.WriteLine(except.Message);
            }
            //17900
            while (mm < total_frames - 2)
            {
                try
                {
                    prev_frame = frame;
                    frame      = cap.QueryFrame();

                    Bitmap image = new Bitmap(frame.Bitmap);

                    // Create a new FAST Corners Detector
                    FastCornersDetector fast = new FastCornersDetector()
                    {
                        Suppress  = true, // suppress non-maximum points
                        Threshold = 70    // less leads to more corners
                    };

                    // Process the image looking for corners
                    List <IntPoint> points = fast.ProcessImage(image);

                    // Create a filter to mark the corners
                    PointsMarker marker = new PointsMarker(points);

                    // Apply the corner-marking filter
                    Bitmap markers = marker.Apply(image);

                    // Show on the screen
                    //Accord.Controls.ImageBox.Show(markers);

                    // Use it to extract interest points from the Lena image:
                    List <IntPoint> descriptors = fast.ProcessImage(image);
                    PointF[]        features    = new PointF[descriptors.Count];

                    int c = 0;
                    foreach (IntPoint p in descriptors)
                    {
                        features[c] = new PointF(p.X, p.Y);
                        c++;
                    }

                    ImageViewer viewer = new ImageViewer();

                    Image <Gray, Byte> prev_grey_img = new Image <Gray, byte>(frame.Width, frame.Height);
                    Image <Gray, Byte> curr_grey_img = new Image <Gray, byte>(frame.Width, frame.Height);
                    curr_grey_img = frame.ToImage <Gray, byte>();
                    prev_grey_img = prev_frame.ToImage <Gray, Byte>();

                    PointF[] shiftedFeatures;
                    Byte[]   status;
                    float[]  trackErrors;

                    CvInvoke.CalcOpticalFlowPyrLK(prev_grey_img, curr_grey_img, features, new Size(9, 9), 3, new MCvTermCriteria(20, 0.05),
                                                  out shiftedFeatures, out status, out trackErrors);



                    //Image<Gray, Byte> displayImage = cap.QueryFrame().ToImage<Gray, Byte>();
                    //for (int i = 0; i < features.Length; i++)
                    //    displayImage.Draw(new LineSegment2DF(features[i], shiftedFeatures[i]), new Gray(), 2);


                    for (int i = 0; i < features.Length; i++)
                    {
                        CvInvoke.Circle(frame, System.Drawing.Point.Round(shiftedFeatures[i]), 4, new MCvScalar(0, 255, 255), 2);
                    }

                    int mean_X = 0;
                    int mean_Y = 0;

                    foreach (PointF p in shiftedFeatures)
                    {
                        mean_X += (int)p.X;
                        mean_Y += (int)p.Y;
                    }

                    mean_X /= shiftedFeatures.Length;
                    mean_Y /= shiftedFeatures.Length;

                    F_L.Add(mean_X);
                    F_L.Add(mean_Y);


                    //double[] inner = new double[] { mean_X, mean_Y };
                    //featuers_list[mm] = inner;

                    //viewer.Image = frame;
                    //viewer.ShowDialog();
                    //prev_frame = frame;

                    //Console.WriteLine("frame:{0} " + mm);
                    Console.WriteLine("frame:{0} " + mm + "  X:{1} " + mean_X + "   Y:{2} " + mean_Y);

                    mm++;
                }
                catch (Exception e)
                { Console.WriteLine(e.Message); }
            }
            //int go = 0;
            //foreach (double[] arr in featuers_list)
            //{
            //    Console.Write("frame:{0} ", go++);
            //    foreach (double d in arr)
            //        Console.Write(d + "    ");

            //    Console.WriteLine();
            //}
            Serialize.SerializeObject(F_L, save_path);
        }