} /* SaveSampleImages */ private PicesFeatureVectorList FilterFeatureVectorList(PicesFeatureVectorList data, ref uint numFilteredOut ) { numFilteredOut = 0; PicesFeatureVectorList keepers = new PicesFeatureVectorList(); foreach (PicesFeatureVector fv in data) { bool keep = true; if ((probMin > 0.0f) && (fv.Probability < probMin)) { keep = false; } else if ((probMax < 1.0f) && (fv.Probability > probMax)) { keep = false; } else if ((sizeMin > 0) && (fv.OrigSize < sizeMin)) { keep = false; } else if ((sizeMax > 0) && (fv.OrigSize > sizeMax)) { keep = false; } else if ((depthMin > 0) && (fv.Depth < depthMin)) { keep = false; } else if ((depthMax > 0) && (fv.Depth > depthMax)) { keep = false; } if (keep) { keepers.Add(fv); } else { numFilteredOut++; } } return(keepers); } /* FilterFeatureVectorList */
} /* CountImagesMissingFeatureData */ private PicesFeatureVectorList SaveFeatureDataBySipperFiles() { PicesFeatureVectorList data = new PicesFeatureVectorList(); String[] sipperFileNames = null; if (String.IsNullOrEmpty(sipperFileName)) { sipperFileNames = dbConn.SipperFileGetList(cruise, station, deployment); } else { sipperFileNames = new String[1]; sipperFileNames[0] = sipperFileName; } if (sipperFileNames != null) { for (int idx = 0; (idx < sipperFileNames.Length) && (!cancelRequested); idx++) { String curSipperFileName = sipperFileNames[idx]; backGroundStatus = "Loading[" + (idx + 1).ToString() + " of " + sipperFileNames.Length.ToString() + "] File[" + curSipperFileName + "]"; PicesFeatureVectorList dataThisSipperFile = dbConn.FeatureDataGetOneSipperFile(curSipperFileName, mlClass, classKeyToUse, false); if (dataThisSipperFile != null) { imagesLoaded += (uint)dataThisSipperFile.Count; uint numFilteredOut = 0; dataThisSipperFile = FilterFeatureVectorList(dataThisSipperFile, ref numFilteredOut); imagesFilteredOut += numFilteredOut; imagesMissingFeatureData += CountImagesMissingFeatureData(dataThisSipperFile); foreach (PicesFeatureVector fv in dataThisSipperFile) { data.Add(fv); } } } } return(data); } /* SaveFeatureDataBySipperFiles */
} /* GradeAgainstGroundTruth */ private void GradeAgainstCrossValidationRun() { if (curSelModel == null) { curSelModel = new PicesTrainingConfigManaged(configFileName, runLog); } if (!curSelModel.Valid()) { MessageBox.Show("Configuration File[" + configFileName + "] is not valid"); return; } bool changesMade = false; PicesFeatureVectorList data = curSelModel.LoadFeatureDataFromTrainingLibraries(changesMade); if (cancelProcessing) { data = null; return; } if (data == null) { MessageBox.Show("No data was loaded from Configuration File[" + configFileName + "] is not valid"); return; } PicesFeatureVectorList examples = data.StratifyAmoungstClasses(numOfFolds); int imageCount = examples.Count; int numImagesPerFold = (imageCount + numOfFolds - 1) / numOfFolds; int firstInGroup = 0; int foldNum; for (foldNum = 0; foldNum < numOfFolds; foldNum++) { int lastInGroup; // If We are doing the last Fold Make sure that we are including all the examples // that have not been tested. if (foldNum == (numOfFolds - 1)) { lastInGroup = imageCount; } else { lastInGroup = firstInGroup + numImagesPerFold - 1; } PicesFeatureVectorList trainingImages = new PicesFeatureVectorList(); PicesFeatureVectorList testImages = new PicesFeatureVectorList(); for (int x = 0; (x < imageCount) && (!cancelProcessing); x++) { PicesFeatureVector newImage = new PicesFeatureVector(examples[x]); if ((x >= firstInGroup) && (x <= lastInGroup)) { testImages.Add(newImage); } else { trainingImages.Add(newImage); } } if (cancelProcessing) { break; } CrossValidate(testImages, trainingImages, foldNum); firstInGroup = firstInGroup + numImagesPerFold; } if (!cancelProcessing) { if (trainingModel != null) { trainingModel = null; } msgQueue.AddMsg("\n" + "Building Final Classifier for User Query"); trainingModel = new TrainingModel2(runLog, curSelModel); trainingModel.BuildTrainingModel(data); } if ((!cancelProcessing) && (trainingModel != null) && (!trainingModel.Valid)) { MessageBox.Show("Error Loading Training Model; refer to dialog box"); cancelProcessing = true; } else if (!cancelProcessing) { confusionMatrix.SetTrainingModel(trainingModel); } // We no longer need the Training Model or Ground Truth loaded BlockStart(); data = null; BlockEnd(); } /* GradeAgainstCrossValidationRun */
} /* DialogTimer_Tick */ private void CreateTuningFeatureFiles() { tuningThreadRunning = true; PicesDataBase.ThreadInit(); AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Started"); AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Creating Destination Directory"); String destinationDirectory = OSservices.AddSlash(DestinationDirectory.Text) + OSservices.GetRootName(modelName); OSservices.CreateDirectoryPath(destinationDirectory); AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Loading feature data for Model[" + modelName + "]"); config = new PicesTrainingConfigManaged(modelName, runLog); if (!config.Valid()) { AddMsgToDialogMsgQueue("\n\n"); AddMsgToDialogMsgQueue("Model[" + modelName + "] is invalid."); tuningThreadFailed = true; tuningThreadDone = true; tuningThreadRunning = false; return; } bool changesMade = false; PicesFeatureVectorList data = config.LoadFeatureDataFromTrainingLibraries(changesMade); if (data == null) { AddMsgToDialogMsgQueue("\n\n"); AddMsgToDialogMsgQueue("Model[" + modelName + "] Could not load Feature Data."); tuningThreadFailed = true; tuningThreadDone = true; tuningThreadRunning = false; return; } if (tuningThreadCancelReq) { AddMsgToDialogMsgQueue("\n\n"); AddMsgToDialogMsgQueue("Process Canceled."); tuningThreadDone = true; tuningThreadRunning = false; return; } AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Feature Data Loaded."); AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Checking that Depth Data Exists."); MakeSureDepthFieldIsIncluded(data); AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Splitting into separate files."); PicesFeatureVectorList trainData = new PicesFeatureVectorList(); PicesFeatureVectorList testData = new PicesFeatureVectorList(); PicesFeatureVectorList validationData = new PicesFeatureVectorList(); PicesClassList classes = data.ExtractListOfClasses(); if (classes == null) { AddMsgToDialogMsgQueue("\n\n"); AddMsgToDialogMsgQueue("Could not extract list of classes from data."); tuningThreadFailed = true; tuningThreadDone = true; tuningThreadRunning = false; return; } foreach (PicesClass c in classes) { int trainCount = 0; int testCount = 0; int validationCount = 0; PicesFeatureVectorList examplesForClass = data.ExtractExamplesForAGivenClass(c); int n = examplesForClass.Count; AddMsgToDialogMsgQueue(DateTime.Now.ToShortTimeString() + " Processing Class[" + c.Name + "] Count[" + n + "]"); trainCount = (int)((float)n * trainingDataPercentage / 100.0f + 0.5f); if (trainingDataMaxImagesPerClass > 0) { if (trainCount > trainingDataMaxImagesPerClass) { trainCount = trainingDataMaxImagesPerClass; } } if (validationDataPercentage == 0.0f) { testCount = n - trainCount; } else { testCount = (int)((float)n * testDataPercentage / 100.0f + 0.5f); } validationCount = n - (trainCount + testCount); examplesForClass.RandomizeOrder(); int validationStart = trainCount + testCount; int testStart = trainCount; for (int idx = 0; idx < n; idx++) { PicesFeatureVector fv = examplesForClass[idx]; if (idx >= validationStart) { validationData.Add(fv); } else if (idx >= testStart) { testData.Add(fv); } else { trainData.Add(fv); } } if (tuningThreadCancelReq) { AddMsgToDialogMsgQueue("\n\n"); AddMsgToDialogMsgQueue("Process Canceled."); break; } } if (!tuningThreadCancelReq) { AddMsgToDialogMsgQueue("\n\n" + DateTime.Now.ToShortTimeString() + " Stratifying Data"); PicesFeatureVectorList trainDataStratified = trainData.StratifyAmoungstClasses(numOfFolds); PicesFeatureVectorList testDataStratified = testData.StratifyAmoungstClasses(numOfFolds); PicesFeatureVectorList validationDataStratified = validationData.StratifyAmoungstClasses(numOfFolds); String rootName = OSservices.AddSlash(destinationDirectory) + OSservices.GetRootName(modelName); if ((trainDataStratified.Count > 0) && (!tuningThreadCancelReq)) { trainDataFileName = rootName + "_Train.data"; AddMsgToDialogMsgQueue("Saving Training Data[" + trainDataFileName + "]"); trainDataStratified.Save(trainDataFileName, "", runLog); } if ((testDataStratified.Count > 0) && (!tuningThreadCancelReq)) { testDataFileName = rootName + "_Test.data"; AddMsgToDialogMsgQueue("Saving Test Data[" + testDataFileName + "]"); testDataStratified.Save(testDataFileName, "", runLog); } if ((validationDataStratified.Count > 0) && (!tuningThreadCancelReq)) { validationDataFileName = rootName + "_Validation.data"; AddMsgToDialogMsgQueue("Saving Validation Data[" + validationDataFileName + "]"); validationDataStratified.Save(validationDataFileName, "", runLog); } } AddMsgToDialogMsgQueue("\n\n"); if (tuningThreadCancelReq) { AddMsgToDialogMsgQueue("Process *** CANCELED ***."); } else { AddMsgToDialogMsgQueue("Process Completed."); } PicesDataBase.ThreadEnd(); tuningThreadDone = true; tuningThreadRunning = false; } /* CreateTuningFeatureFiles */