Exemple #1
0
        /// <summary>
        /// Create a NEAT population.
        /// </summary>
        /// <param name="architecture">The architecture string to use.</param>
        /// <param name="input">The input count.</param>
        /// <param name="output">The output count.</param>
        /// <returns>The population.</returns>
        public IMLMethod Create(String architecture, int input,
                                int output)
        {
            if (input <= 0)
            {
                throw new EncogError("Must have at least one input for NEAT.");
            }

            if (output <= 0)
            {
                throw new EncogError("Must have at least one output for NEAT.");
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(architecture);
            ParamsHolder holder = new ParamsHolder(args);

            int populationSize = holder.GetInt(
                MLMethodFactory.PropertyPopulationSize, false, 1000);

            int cycles = holder.GetInt(
                MLMethodFactory.PropertyCycles, false, NEATPopulation.DefaultCycles);

            IActivationFunction af = this.factory.Create(
                holder.GetString(MLMethodFactory.PropertyAF, false, MLActivationFactory.AF_SSIGMOID));

            NEATPopulation pop = new NEATPopulation(input, output, populationSize);

            pop.Reset();
            pop.ActivationCycles       = cycles;
            pop.NEATActivationFunction = af;

            return(pop);
        }
        /// <summary>
        /// Create a feed forward network.
        /// </summary>
        /// <param name="architecture">The architecture string to use.</param>
        /// <param name="input">The input count.</param>
        /// <param name="output">The output count.</param>
        /// <returns>The feedforward network.</returns>
        public IMLMethod Create(String architecture, int input,
                                int output)
        {
            if (input <= 0)
            {
                throw new EncogError("Must have at least one input for EPL.");
            }

            if (output <= 0)
            {
                throw new EncogError("Must have at least one output for EPL.");
            }


            IDictionary <String, String> args = ArchitectureParse.ParseParams(architecture);
            var holder = new ParamsHolder(args);

            int populationSize = holder.GetInt(
                MLMethodFactory.PropertyPopulationSize, false, 1000);
            String variables = holder.GetString("vars", false, "x");
            String funct     = holder.GetString("funct", false, null);

            var context = new EncogProgramContext();

            string[] tok = variables.Split(',');
            foreach (string v in tok)
            {
                context.DefineVariable(v);
            }

            if (String.Compare("numeric", funct, StringComparison.OrdinalIgnoreCase) == 0)
            {
                StandardExtensions.CreateNumericOperators(context);
            }

            var pop = new PrgPopulation(context, populationSize);

            if (context.Functions.Count > 0)
            {
                (new RampedHalfAndHalf(context, 2, 6)).Generate(new EncogRandom(), pop);
            }
            return(pop);
        }
        /**
         * Create a K2 trainer.
         *
         * @param method
         *            The method to use.
         * @param training
         *            The training data to use.
         * @param argsStr
         *            The arguments to use.
         * @return The newly created trainer.
         */
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            ParamsHolder holder = new ParamsHolder(args);

            int maxParents = holder.GetInt(
                MLTrainFactory.PropertyMaxParents, false, 1);
            String searchStr    = holder.GetString("SEARCH", false, "k2");
            String estimatorStr = holder.GetString("ESTIMATOR", false, "simple");
            String initStr      = holder.GetString("INIT", false, "naive");

            IBayesSearch    search;
            IBayesEstimator estimator;
            BayesianInit    init;

            if (string.Compare(searchStr, "k2", true) == 0)
            {
                search = new SearchK2();
            }
            else if (string.Compare(searchStr, "none", true) == 0)
            {
                search = new SearchNone();
            }
            else
            {
                throw new BayesianError("Invalid search type: " + searchStr);
            }

            if (string.Compare(estimatorStr, "simple", true) == 0)
            {
                estimator = new SimpleEstimator();
            }
            else if (string.Compare(estimatorStr, "none", true) == 0)
            {
                estimator = new EstimatorNone();
            }
            else
            {
                throw new BayesianError("Invalid estimator type: " + estimatorStr);
            }

            if (string.Compare(initStr, "simple") == 0)
            {
                init = BayesianInit.InitEmpty;
            }
            else if (string.Compare(initStr, "naive") == 0)
            {
                init = BayesianInit.InitNaiveBayes;
            }
            else if (string.Compare(initStr, "none") == 0)
            {
                init = BayesianInit.InitNoChange;
            }
            else
            {
                throw new BayesianError("Invalid init type: " + initStr);
            }

            return(new TrainBayesian((BayesianNetwork)method, training, maxParents, init, search, estimator));
        }
        /// <summary>
        /// Create a LMA trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is SupportVectorMachine))
            {
                throw new EncogError(
                          "Neighborhood training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);

            double learningRate = holder.GetDouble(
                MLTrainFactory.PropertyLearningRate, false, 0.7d);
            String neighborhoodStr = holder.GetString(
                MLTrainFactory.PropertyNeighborhood, false, "rbf");
            String rbfTypeStr = holder.GetString(
                MLTrainFactory.PropertyRBFType, false, "gaussian");

            RBFEnum t;

            if (rbfTypeStr.Equals("Gaussian", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.Gaussian;
            }
            else if (rbfTypeStr.Equals("Multiquadric", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.Multiquadric;
            }
            else if (rbfTypeStr.Equals("InverseMultiquadric", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.InverseMultiquadric;
            }
            else if (rbfTypeStr.Equals("MexicanHat", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.MexicanHat;
            }
            else
            {
                t = RBFEnum.Gaussian;
            }

            INeighborhoodFunction nf = null;

            if (neighborhoodStr.Equals("bubble", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodBubble(1);
            }
            else if (neighborhoodStr.Equals("rbf", StringComparison.InvariantCultureIgnoreCase))
            {
                String str = holder.GetString(
                    MLTrainFactory.PropertyDimensions, true, null);
                int[] size = NumberList.FromListInt(CSVFormat.EgFormat, str);
                nf = new NeighborhoodRBF(size, t);
            }
            else if (neighborhoodStr.Equals("rbf1d", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodRBF1D(t);
            }
            if (neighborhoodStr.Equals("single", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodSingle();
            }

            var result = new BasicTrainSOM((SOMNetwork)method,
                                           learningRate, training, nf);

            if (args.ContainsKey(MLTrainFactory.PropertyIterations))
            {
                int plannedIterations = holder.GetInt(
                    MLTrainFactory.PropertyIterations, false, 1000);
                double startRate = holder.GetDouble(
                    MLTrainFactory.PropertyStartLearningRate, false, 0.05d);
                double endRate = holder.GetDouble(
                    MLTrainFactory.PropertyEndLearningRate, false, 0.05d);
                double startRadius = holder.GetDouble(
                    MLTrainFactory.PropertyStartRadius, false, 10);
                double endRadius = holder.GetDouble(
                    MLTrainFactory.PropertyEndRadius, false, 1);
                result.SetAutoDecay(plannedIterations, startRate, endRate,
                                    startRadius, endRadius);
            }

            return(result);
        }
        /// <summary>
        /// Create a PNN network.
        /// </summary>
        ///
        /// <param name="architecture">THe architecture string to use.</param>
        /// <param name="input">The input count.</param>
        /// <param name="output">The output count.</param>
        /// <returns>The RBF network.</returns>
        public IMLMethod Create(String architecture, int input,
                                int output)
        {
            IList <String> layers = ArchitectureParse.ParseLayers(architecture);

            if (layers.Count != MaxLayers)
            {
                throw new EncogError(
                          "PNN Networks must have exactly three elements, "
                          + "separated by ->.");
            }

            ArchitectureLayer inputLayer = ArchitectureParse.ParseLayer(
                layers[0], input);
            ArchitectureLayer pnnLayer = ArchitectureParse.ParseLayer(
                layers[1], -1);
            ArchitectureLayer outputLayer = ArchitectureParse.ParseLayer(
                layers[2], output);

            int inputCount  = inputLayer.Count;
            int outputCount = outputLayer.Count;

            PNNKernelType kernel;
            PNNOutputMode outmodel;

            if (pnnLayer.Name.Equals("c", StringComparison.InvariantCultureIgnoreCase))
            {
                outmodel = PNNOutputMode.Classification;
            }
            else if (pnnLayer.Name.Equals("r", StringComparison.InvariantCultureIgnoreCase))
            {
                outmodel = PNNOutputMode.Regression;
            }
            else if (pnnLayer.Name.Equals("u", StringComparison.InvariantCultureIgnoreCase))
            {
                outmodel = PNNOutputMode.Unsupervised;
            }
            else
            {
                throw new NeuralNetworkError("Unknown model: " + pnnLayer.Name);
            }

            var holder = new ParamsHolder(pnnLayer.Params);

            String kernelStr = holder.GetString("KERNEL", false, "gaussian");

            if (kernelStr.Equals("gaussian", StringComparison.InvariantCultureIgnoreCase))
            {
                kernel = PNNKernelType.Gaussian;
            }
            else if (kernelStr.Equals("reciprocal", StringComparison.InvariantCultureIgnoreCase))
            {
                kernel = PNNKernelType.Reciprocal;
            }
            else
            {
                throw new NeuralNetworkError("Unknown kernel: " + kernelStr);
            }

            var result = new BasicPNN(kernel, outmodel, inputCount,
                                      outputCount);

            return(result);
        }