public static YDataFloat GenerateEdgeDetectedImageAccel(AcceleratorTarget acceleratorTarget, YDataFloat imageData) { var target = GetAcceleratorTarget(acceleratorTarget); var width = imageData.Width; var height = imageData.Height; var fpInput = new FloatParallelArray(imageData.Data); var fpInputX = ParallelArrays.Shift(fpInput, new int[] { 1, 0 }); var fpInputY = ParallelArrays.Shift(fpInput, new int[] { 0, 1 }); var fpDX = ParallelArrays.Subtract(fpInputX, fpInput); var fpDY = ParallelArrays.Subtract(fpInputY, fpInput); var fpTotals = ParallelArrays.Add(fpDX, fpDY); var fpOutput = ParallelArrays.Divide(fpTotals, 2.0f); fpOutput = ParallelArrays.Add(fpOutput, imageData.MaximumValue / 2.0f); fpOutput = ParallelArrays.Max(fpOutput, 0.0f); fpOutput = ParallelArrays.Min(fpOutput, imageData.MaximumValue); var output = target.ToArray2D(fpOutput); return(new YDataFloat(output, imageData.MaximumValue)); }
public override void DoEpoch(float t, float round_t) { float[,] test2d; float[] test; this.FindBMU(); //Slice the pwinner row by row and do some great stuff m_PWinner = ParallelArrays.Evaluate(m_PWinner); Slice[] slices = new Slice[2]; for (int i = 0; i < m_Parent.DataSource.PatternCount; ++i) { slices[1] = new Slice(0, m_Parent.NeuronMap.GetLength(0)); slices[0] = new Slice(i, 1); FloatParallelArray s = ParallelArrays.Section(m_PWinner, slices); s = ParallelArrays.Evaluate(s); FloatParallelArray bmuw = ParallelArrays.DropDimension(ParallelArrays.InnerProduct(s, m_GPUWeight), 0); FloatParallelArray bmuc = ParallelArrays.InnerProduct(s, m_GPUCoord); //Compute distances to bmu DisposableFloatParallelArray bmucEvaluated = ParallelArrays.Evaluate(bmuc); //Workaround bmuc = ParallelArrays.Stretch(bmucEvaluated, m_Parent.NeuronMap.GetLength(0), 1); FloatParallelArray diff = ParallelArrays.Subtract(m_GPUCoord, bmuc); FloatParallelArray dist = ParallelArrays.Multiply(diff, diff); dist = ParallelArrays.Sum(dist, 1); dist = ParallelArrays.Multiply(-1.0f, dist); //Apply update formula FloatParallelArray constE = new FloatParallelArray((float)(Math.E), m_Parent.NeuronMap.GetLength(0)); FloatParallelArray sigma = new FloatParallelArray((float)(Math.Pow(Neighborhood(t, round_t) * 0.85, 2)), m_Parent.NeuronMap.GetLength(0)); FloatParallelArray lrate = new FloatParallelArray((float)LearningRate(t, round_t), m_Parent.NeuronMap.GetLength(0), m_Parent.DataSource.PatternLength); FloatParallelArray omeg = ParallelArrays.Divide(dist, sigma); //FloatParallelArray momeg = ParallelArrays.Pow(constE, omeg); FloatParallelArray momeg = ParallelArrays.Pow2(ParallelArrays.Log2(constE) * omeg); DisposableFloatParallelArray domeg = ParallelArrays.Evaluate(momeg); //Workaround omeg = ParallelArrays.AddDimension(domeg, 1); omeg = ParallelArrays.Stretch(omeg, 1, m_Parent.DataSource.PatternLength); FloatParallelArray sbmuw = ParallelArrays.AddDimension(bmuw, 0); sbmuw = ParallelArrays.Stretch(sbmuw, m_Parent.NeuronMap.GetLength(0), 1); m_GPUWeight = ((m_GPUWeight + ((sbmuw - m_GPUWeight) * omeg * lrate))); } m_GPUWeight = ParallelArrays.Evaluate(m_GPUWeight); }
public override void FindBMU() { //Normalize the weight vector FloatParallelArray transpose = ParallelArrays.Transpose(m_GPUWeight, 1, 0); FloatParallelArray weightsq = ParallelArrays.InnerProduct(m_GPUWeight, ParallelArrays.Transpose(m_GPUWeight, 1, 0)); FloatParallelArray weightsum = ParallelArrays.Sum(weightsq, 0); FloatParallelArray weightlength = ParallelArrays.Sqrt(weightsum); weightlength = ParallelArrays.Stretch(ParallelArrays.AddDimension(weightlength, 1), 1, m_Parent.DataSource.PatternLength); FloatParallelArray weightnorm = ParallelArrays.Divide(m_GPUWeight, weightlength); weightnorm = ParallelArrays.Transpose(weightnorm, 1, 0); //Normalize the input vector FloatParallelArray inputsq = ParallelArrays.InnerProduct(m_GPUInput, ParallelArrays.Transpose(m_GPUInput, 1, 0)); FloatParallelArray inputsum = ParallelArrays.Sum(inputsq, 0); FloatParallelArray inputlength = ParallelArrays.Sqrt(inputsum); inputlength = ParallelArrays.Stretch(ParallelArrays.AddDimension(inputlength, 1), 1, m_Parent.DataSource.PatternLength); FloatParallelArray inputnorm = ParallelArrays.Divide(m_GPUInput, inputlength); FloatParallelArray pacc = ParallelArrays.InnerProduct(inputnorm, weightnorm); //Replication bug here... FloatParallelArray bmxval = ParallelArrays.MaxVal(pacc, 1); //MSR Vivian Swelson workaround DisposableFloatParallelArray bmxvalEvaluated = ParallelArrays.Evaluate(bmxval); bmxval = ParallelArrays.AddDimension(bmxvalEvaluated, 1); bmxval = ParallelArrays.Stretch(bmxval, 1, m_Parent.NeuronMap.GetLength(0)); //Winner matrix (0 = winner) FloatParallelArray pwinner = ParallelArrays.Subtract(pacc, bmxval); //Convert to 1 = winner, 0 otherwise FloatParallelArray zero = new FloatParallelArray(0.0f, pwinner.Shape); FloatParallelArray one = new FloatParallelArray(1.0f, pwinner.Shape); BoolParallelArray bmask = ParallelArrays.CompareEqual(pwinner, zero); m_PWinner = ParallelArrays.Cond(bmask, one, zero); }
public static void AdvanceEdgeDetectionAverageAccel(AcceleratorTarget acceleratorTarget, ref YDataFloat edgeMapAverage, YDataFloat edgeDataNew, YDataFloat edgeDataOld, int edgeMapAverageCount) { var target = GetAcceleratorTarget(acceleratorTarget); var width = edgeMapAverage.Width; var height = edgeMapAverage.Height; float edgeMapAverageCountFloat = edgeMapAverageCount; var fpAverage = new FloatParallelArray(edgeMapAverage.Data); var fpNew = new FloatParallelArray(edgeDataNew.Data); var fpOld = new FloatParallelArray(edgeDataOld.Data); var fpAdjust = ParallelArrays.Subtract(fpNew, fpOld); fpAdjust = ParallelArrays.Divide(fpAdjust, edgeMapAverageCountFloat); var fpOutput = ParallelArrays.Subtract(fpAverage, fpAdjust); var output = target.ToArray2D(fpOutput); edgeMapAverage = new YDataFloat(output, edgeMapAverage.MaximumValue); }