Exemple #1
0
        /// <summary>
        ///   Computes the variable importance in projection (VIP)
        /// </summary>
        /// <returns>
        ///   A predictors x factors matrix in which each row represents
        ///   the importance of the variable in a projection considering
        ///   the number of factors indicated by the column.
        /// </returns>
        /// <remarks>
        ///   References:
        ///    - http://mevik.net/work/software/VIP.R
        ///    - http://www.postech.ac.kr/~chjun/publication/Chemometrics/chemo05.pdf
        /// </remarks>
        protected double[,] ComputeVariableImportanceInProjection(int factors)
        {
            int xcols = sourceX.GetLength(1);

            double[,] importance = new double[xcols, factors];

            // For each input variable
            for (int j = 0; j < xcols; j++)
            {
                double[] SS1 = new double[factors];
                double[] SS2 = new double[factors];

                // For each latent factor
                for (int k = 0; k < factors; k++)
                {
                    // Assume single response variable
                    var b = loadingsY.GetColumn(k)[0];
                    var t = scoresX.GetColumn(k);
                    var w = loadingsX.GetColumn(k);

                    var ss = (b * b) * (t.InnerProduct(t));
                    var wn = (w[j] * w[j]) / Norm.SquareEuclidean(w);

                    SS1[k] = ss * wn;
                    SS2[k] = ss;
                }

                var sum1 = Matrix.CumulativeSum(SS1);
                var sum2 = Matrix.CumulativeSum(SS2);

                for (int k = 0; k < factors; k++)
                {
                    importance[j, k] = System.Math.Sqrt(xcols * sum1[k] / sum2[k]);
                }
            }

            return(importance);


            // Matricial form (possibly more efficient) solution

            /*
             * var SS = loadingsY.ElementwisePower(2).GetRow(0)
             *  .ElementwiseMultiply(scoresX.ElementwisePower(2).Sum(1));
             *
             * var loadingsX2 = loadingsX.ElementwisePower(2);
             *
             * var Wnorm2 = loadingsX2.Sum(1);
             *
             * var SSW = loadingsX2.ElementwiseMultiply(SS.ElementwiseDivide(Wnorm2), 1);
             *
             * var division = SSW.CumulativeSum(0).ToMatrix()
             *  .ElementwiseDivide(SS.CumulativeSum(), 0);
             *
             * this.vip = Matrix.Sqrt(division.Multiply(SSW.GetLength(0))).Transpose();
             */
        }
    /// <summary>
    ///   Gets the Euclidean norm for a matrix.
    /// </summary>
    ///
    public static float[] Euclidean(this float[,] a, int dimension)
    {
        float[] norm = Norm.SquareEuclidean(a, dimension);

        for (int i = 0; i < norm.Length; i++)
        {
            norm[i] = (float)System.Math.Sqrt(norm[i]);
        }

        return(norm);
    }
    /// <summary>
    ///   Gets the Euclidean norm for a matrix.
    /// </summary>
    ///
    public static double[] Euclidean(this double[,] a, int dimension)
    {
        double[] norm = Norm.SquareEuclidean(a, dimension);

        for (int i = 0; i < norm.Length; i++)
        {
            norm[i] = System.Math.Sqrt(norm[i]);
        }

        return(norm);
    }
        /// <summary>
        /// Calculate the Procrustes Distance between two sets of data
        /// </summary>
        /// <param name="samples1">First data set</param>
        /// <param name="samples2">Second data set</param>
        /// <returns>The Procrustes distance</returns>
        double ProcrustesDistance(double[,] samples1, double[,] samples2)
        {
            double sum = 0;

            // Only calculate the distance for the maximal common number of points (i.e. the Min between samples1 and samples2 number of points)
            for (int i = 0; i < System.Math.Min(samples1.GetLength(0), samples2.GetLength(0)); i++)
            {
                sum += Norm.SquareEuclidean(samples1.GetRow(i).Subtract(samples2.GetRow(i)));
            }

            return(System.Math.Sqrt(sum));
        }
Exemple #5
0
        /// <summary>
        ///   Estimates suitable values for the sigmoid kernel
        ///   by exploring the response area of the tanh function.
        /// </summary>
        ///
        /// <param name="inputs">An input data set.</param>
        ///
        /// <returns>A Sigmoid kernel initialized with appropriate values.</returns>
        ///
        public static Sigmoid Estimate(double[][] inputs)
        {
            double[] norm = new double[inputs.Length];
            for (int i = 0; i < inputs.Length; i++)
            {
                norm[i] = Norm.SquareEuclidean(inputs[i]);
            }

            double max = Matrix.Max(norm);

            double r = -Math.E;
            double a = -r / max;

            return(new Sigmoid(a, r));
        }
        /// <summary>
        ///   Projects an input point into feature space.
        /// </summary>
        ///
        /// <param name="input">The input point to be projected into feature space.</param>
        ///
        /// <returns>
        ///   The feature space representation of the given <paramref name="input"/> point.
        /// </returns>
        ///
        public double[] Transform(double[] input)
        {
            // http://epubs.siam.org/doi/pdf/10.1137/1.9781611972818.19

            double[] features = new double[coefficients.Length];

            features[0] = 1;

            for (int index = 1, k = 0; index < coefficients.Length; k++)
            {
                double alpha = coefficients[k];

                foreach (int[] s in Combinatorics.Sequences(input.Length, k + 1))
                {
                    double prod = 1.0;
                    for (int i = 0; i < s.Length; i++)
                    {
                        prod *= input[s[i]];
                    }

                    features[index++] = alpha * prod;
                    if (index >= coefficients.Length)
                    {
                        break;
                    }
                }
            }

            double norm     = Norm.SquareEuclidean(input);
            double constant = Math.Exp(-gaussian.Gamma * norm);

            for (int i = 0; i < features.Length; i++)
            {
                features[i] *= constant;
            }

            return(features);
        }