Exemple #1
0
 private void InitializeInputs(int numOfThisLayer)
 {
     if (numOfThisLayer == 0)
     {
         InitializeInputs_FirstLayerNeuron(); return;
     }
     Inputs = new NeuronInput[Layers[numOfThisLayer - 1].NeuronsList.Length];
 }
Exemple #2
0
        private void AddLayerInput(int neurons)
        {
            var layer = new LayerInput
            {
                Neurons = new List <Neuron>(),
            };

            for (var i = 1; i <= neurons; i++)
            {
                var neuron = new NeuronInput
                {
                    Connections1 = new List <Connection>(),
                    Connections2 = new List <Connection>(),
                };
                neuron.Bias = Math2.Range(-1f, 1);
                layer.Neurons.Add(neuron);
            }
            this.Layers.Add(layer);
        }
        public void TestSigmoidalFunction()
        {
            NeuronInput inputA = new NeuronInput(0.67, 1.5);
            NeuronInput inputB = new NeuronInput(0.5, 1.0);
            NeuronInput inputC = new NeuronInput(0.8, 0.8);

            NeuronInput[] inputs = new NeuronInput[3];

            inputs[0] = inputA;
            inputs[1] = inputB;
            inputs[2] = inputC;

            SigmoidNeuron neuron = new SigmoidNeuron(inputs, 3.0);

            double output   = neuron.SigmoidalFunction();
            double expected = 0.99420529989699;
            double delta    = expected - output;

            Assert.AreEqual(output, expected, delta);
        }
Exemple #4
0
 private void InitializeInputs_FirstLayerNeuron()
 {
     Inputs = new NeuronInput[InputValues.Length];
 }