public IEnumerator Train() { yield return(StartCoroutine(FocusTraining())); NeuralNetworkProperties properties = new NeuralNetworkProperties(batchSize, trainingInput, trainingAnswer, testingInput, testingAnswer, hiddenLayerSizes); yield return(StartCoroutine(client.deepLearningClient.DeepLearning(properties))); DefocusTraining(); }
public IEnumerator DeepLearning(NeuralNetworkProperties properties) { string json = JsonUtility.ToJson(properties); Debug.Log(json); byte[] data = System.Text.Encoding.UTF8.GetBytes("ni" + json); int bytes; string responseData = ""; netStream.Write(data, 0, data.Length); ReportDeepLearningAccuracy(); Debug.Log("Begin training..."); int i = 0; while (true) { if (breakFlag) { breakFlag = false; break; } data = System.Text.Encoding.UTF8.GetBytes("nt"); netStream.Write(data, 0, data.Length); data = new byte[1024]; bytes = netStream.Read(data, 0, data.Length); responseData = System.Text.Encoding.UTF8.GetString(data, 0, bytes); //float loss = float.Parse(responseData); //Debug.Log(loss); if (i % 10 == 0) { ReportDeepLearningAccuracy(); } i += 1; yield return(null); } Debug.Log("Finished"); ReportDeepLearningAccuracy(); }