Exemple #1
0
            public static NetworkResult guessHTTPService()
            {
                NetworkResult result = new NetworkResult("Unknown", 100.0f);

                NeuralNetwork.Network net = new NeuralNetwork.Network();
                net.addInput("Windows");
                net.addInput("Linux");
                net.addInput("FreeBSD");
                net.addInput("PHP");
                net.addInput("ASP.NET");
                net.addInput("Static");
                net.addInput("Ruby/Node.js");
                return(result);
            }
            public static OSResult guessOS(string[] foundServices)
            {
                OSResult result;

                // Initialize objects
                NeuralNetwork.Network net = new NeuralNetwork.Network();

                // Load in data to memory
                if (!File.Exists(Path.Combine(Environment.ExpandEnvironmentVariables("%userprofile%"), "Documents", "Gerbil", "memstore", "OSServiceTraining.ini")))
                {
                    return(new OSResult("ERROR", 0.0f));
                }
                string[] trainingData = File.ReadAllLines(Path.Combine(Environment.ExpandEnvironmentVariables("%userprofile%"), "Documents", "Gerbil", "memstore", "OSServiceTraining.ini"));
                // Calculate weights
                PairCounter pc = new PairCounter();

                foreach (string i in trainingData)
                {
                    string sName = i.Split('=')[0];
                    string fOS   = i.Split('=')[1];
                    pc.Add(new Pair(sName, fOS));
                }
                Dictionary <Pair, float> connectionWeights = getPercentagesFromPair(pc.getResults());

                // TODO: Train network
                foreach (KeyValuePair <Pair, float> i in connectionWeights)
                {
                    net.addInput(i.Key.item1);
                    net.addOutput(i.Key.item2, i.Key.item1 + "Connector", i.Value, i.Key.item1);
                }
                // Feed data into tranined neural network
                foreach (string i in foundServices)
                {
                    try
                    {
                        net.fireInput(i);
                    }
                    catch (NeuralNetwork.NodeNotFoundException e)
                    {
                        // Serive does not exist, since we are not in training mode, ignore.
                    }
                    catch
                    {
                        // A serious engine error occured. Throw fatal error.
                        throw new FatalEngineException();
                    }
                }
                // Get outputs
                Dictionary <string, float> results = net.getResults();
                string resultName      = "Unknown";
                float  resultCertainty = 0.0f;
                float  maxCertainty    = 0.0f;

                // Find most likely answer
                foreach (KeyValuePair <string, float> i in results)
                {
                    if (i.Value > resultCertainty)
                    {
                        resultName      = i.Key;
                        resultCertainty = i.Value;
                        maxCertainty   += i.Value;
                    }
                }
                resultCertainty = resultCertainty / maxCertainty;
                result          = new OSResult(resultName, resultCertainty);
                return(result);
            }