Exemple #1
0
        public void NeuralNetOptimizer_Reset_Does_Not_Throw()
        {
            var parametersAndGradients = new List <ParametersAndGradients>
            {
                new ParametersAndGradients(new float[10], new float[10]),
                new ParametersAndGradients(new float[10], new float[10]),
            };

            foreach (OptimizerMethod optimizer in Enum.GetValues(typeof(OptimizerMethod)))
            {
                var sut = new NeuralNetOptimizer(0.001, 10, optimizerMethod: optimizer);
                sut.UpdateParameters(parametersAndGradients);
                sut.Reset();
            }
        }
        /// <summary>
        /// Learns a neural net based on the observations and targets.
        /// The learning only uses the observations which indices are present in indices.
        /// ValidationObservations and ValidationTargets are used to track the validation loss pr. iteration.
        /// The iteration with the best validaiton loss is returned.
        /// </summary>
        /// <param name="observations"></param>
        /// <param name="targets"></param>
        /// <param name="indices"></param>
        /// <param name="validationObservations"></param>
        /// <param name="validationTargets"></param>
        /// <returns></returns>
        public NeuralNet Learn(F64Matrix observations, double[] targets, int[] indices,
                               F64Matrix validationObservations, double[] validationTargets)
        {
            Checks.VerifyObservationsAndTargets(observations, targets);
            Checks.VerifyIndices(indices, observations, targets);

            // Only check validation data if in use.
            if (validationObservations != null && validationTargets != null)
            {
                Checks.VerifyObservationsAndTargets(validationObservations, validationTargets);
            }

            // targetEncoder
            var oneOfNTargets = m_targetEncoder.Encode(targets);

            // Setup working parameters
            var samples         = indices.Length;
            var learningIndices = indices.ToArray();
            var numberOfBatches = samples / m_batchSize; // check for size mismatch
            var batchTargets    = Matrix <float> .Build.Dense(m_batchSize, oneOfNTargets.ColumnCount);

            var batchObservations = Matrix <float> .Build.Dense(m_batchSize, observations.ColumnCount);

            if (m_batchSize > samples)
            {
                throw new ArgumentException("BatchSize: " + m_batchSize +
                                            " is larger than number og observations: " + samples);
            }

            var currentLoss = 0.0;

            // initialize net
            m_net.Initialize(m_batchSize, m_random);

            // extract reference to parameters and gradients
            var parametersAndGradients = m_net.GetParametersAndGradients();

            // reset optimizer
            m_optimizer.Reset();

            // Setup early stopping if validation data is provided.
            var earlyStopping = validationObservations != null && validationTargets != null;

            NeuralNet      bestNeuralNet = null;
            Matrix <float> floatValidationObservations = null;
            Matrix <float> floatValidationTargets      = null;
            Matrix <float> floatValidationPredictions  = null;
            var            bestLoss = double.MaxValue;

            if (earlyStopping)
            {
                var validationIndices = Enumerable.Range(0, validationTargets.Length).ToArray();

                floatValidationObservations = Matrix <float> .Build
                                              .Dense(validationObservations.RowCount, validationObservations.ColumnCount);

                CopyBatch(validationObservations, floatValidationObservations, validationIndices);

                floatValidationTargets = m_targetEncoder.Encode(validationTargets);

                floatValidationPredictions = Matrix <float> .Build
                                             .Dense(floatValidationTargets.RowCount, floatValidationTargets.ColumnCount);
            }

            var timer = new Stopwatch();

            // train using stochastic gradient descent
            for (int iteration = 0; iteration < m_iterations; iteration++)
            {
                timer.Restart();

                var accumulatedLoss = 0.0;
                learningIndices.Shuffle(m_random);

                for (int i = 0; i < numberOfBatches; i++)
                {
                    var workIndices = learningIndices
                                      .Skip(i * m_batchSize)
                                      .Take(m_batchSize).ToArray();

                    if (workIndices.Length != m_batchSize)
                    {
                        continue; // only train with full batch size
                    }

                    CopyBatchTargets(oneOfNTargets, batchTargets, workIndices);
                    CopyBatch(observations, batchObservations, workIndices);

                    // forward pass.
                    var predictions = m_net.Forward(batchObservations);

                    // loss
                    var batchLoss = m_loss.Loss(batchTargets, predictions);
                    accumulatedLoss += batchLoss * m_batchSize;

                    // Backwards pass.
                    m_net.Backward(batchTargets);

                    // Weight update.
                    m_optimizer.UpdateParameters(parametersAndGradients);
                }

                currentLoss = accumulatedLoss / (double)indices.Length;

                if (earlyStopping)
                {
                    var candidate = m_net.CopyNetForPredictionModel();
                    candidate.Forward(floatValidationObservations, floatValidationPredictions);
                    var validationLoss = m_loss.Loss(floatValidationTargets, floatValidationPredictions);

                    timer.Stop();

                    Trace.WriteLine(string.Format("Iteration: {0:000} - Loss {1:0.00000} - Validation: {2:0.00000} - Time (ms): {3}",
                                                  (iteration + 1), currentLoss, validationLoss, timer.ElapsedMilliseconds));

                    if (validationLoss < bestLoss)
                    {
                        bestLoss      = validationLoss;
                        bestNeuralNet = candidate;
                    }
                }
                else
                {
                    timer.Stop();

                    Trace.WriteLine(string.Format("Iteration: {0:000} - Loss {1:0.00000} - Time (ms): {2}",
                                                  (iteration + 1), currentLoss, timer.ElapsedMilliseconds));
                }

                if (double.IsNaN(currentLoss))
                {
                    Trace.WriteLine("Loss is NaN, stopping...");
                    break;
                }
            }

            if (earlyStopping)
            {
                return(bestNeuralNet);
            }
            else
            {
                return(m_net.CopyNetForPredictionModel());
            }
        }