/**
         * return a sqrt root - the routine verifies that the calculation returns the right value - if
         * none exists it returns null.
         */
        public override ECFieldElement Sqrt()
        {
            /*
             * Q == 8m + 5, so we use Pocklington's method for this case.
             *
             * First, raise this element to the exponent 2^252 - 2^1 (i.e. m + 1)
             *
             * Breaking up the exponent's binary representation into "repunits", we get:
             * { 251 1s } { 1 0s }
             *
             * Therefore we need an addition chain containing 251 (the lengths of the repunits)
             * We use: 1, 2, 3, 4, 7, 11, 15, 30, 60, 120, 131, [251]
             */

            uint[] x1 = this.x;
            if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
            {
                return(this);
            }

            uint[] x2 = Nat256.Create();
            Curve25519Field.Square(x1, x2);
            Curve25519Field.Multiply(x2, x1, x2);
            uint[] x3 = x2;
            Curve25519Field.Square(x2, x3);
            Curve25519Field.Multiply(x3, x1, x3);
            uint[] x4 = Nat256.Create();
            Curve25519Field.Square(x3, x4);
            Curve25519Field.Multiply(x4, x1, x4);
            uint[] x7 = Nat256.Create();
            Curve25519Field.SquareN(x4, 3, x7);
            Curve25519Field.Multiply(x7, x3, x7);
            uint[] x11 = x3;
            Curve25519Field.SquareN(x7, 4, x11);
            Curve25519Field.Multiply(x11, x4, x11);
            uint[] x15 = x7;
            Curve25519Field.SquareN(x11, 4, x15);
            Curve25519Field.Multiply(x15, x4, x15);
            uint[] x30 = x4;
            Curve25519Field.SquareN(x15, 15, x30);
            Curve25519Field.Multiply(x30, x15, x30);
            uint[] x60 = x15;
            Curve25519Field.SquareN(x30, 30, x60);
            Curve25519Field.Multiply(x60, x30, x60);
            uint[] x120 = x30;
            Curve25519Field.SquareN(x60, 60, x120);
            Curve25519Field.Multiply(x120, x60, x120);
            uint[] x131 = x60;
            Curve25519Field.SquareN(x120, 11, x131);
            Curve25519Field.Multiply(x131, x11, x131);
            uint[] x251 = x11;
            Curve25519Field.SquareN(x131, 120, x251);
            Curve25519Field.Multiply(x251, x120, x251);

            uint[] t1 = x251;
            Curve25519Field.Square(t1, t1);

            uint[] t2 = x120;
            Curve25519Field.Square(t1, t2);

            if (Nat256.Eq(x1, t2))
            {
                return(new Curve25519FieldElement(t1));
            }

            /*
             * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess,
             * which is ((4x)^(m + 1))/2 mod Q
             */
            Curve25519Field.Multiply(t1, PRECOMP_POW2, t1);

            Curve25519Field.Square(t1, t2);

            if (Nat256.Eq(x1, t2))
            {
                return(new Curve25519FieldElement(t1));
            }

            return(null);
        }
        /**
         * return a sqrt root - the routine verifies that the calculation returns the right value - if
         * none exists it returns null.
         */
        public override ECFieldElement Sqrt()
        {
            /*
             * Raise this element to the exponent 2^254 - 2^30 - 2^7 - 2^6 - 2^5 - 2^4 - 2^2
             *
             * Breaking up the exponent's binary representation into "repunits", we get:
             * { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 2 1s } { 2 0s}
             *
             * Therefore we need an addition chain containing 2, 22, 223 (the lengths of the repunits)
             * We use: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
             */

            uint[] x1 = this.x;
            if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
            {
                return(this);
            }

            uint[] x2 = Nat256.Create();
            SecP256K1Field.Square(x1, x2);
            SecP256K1Field.Multiply(x2, x1, x2);
            uint[] x3 = Nat256.Create();
            SecP256K1Field.Square(x2, x3);
            SecP256K1Field.Multiply(x3, x1, x3);
            uint[] x6 = Nat256.Create();
            SecP256K1Field.SquareN(x3, 3, x6);
            SecP256K1Field.Multiply(x6, x3, x6);
            uint[] x9 = x6;
            SecP256K1Field.SquareN(x6, 3, x9);
            SecP256K1Field.Multiply(x9, x3, x9);
            uint[] x11 = x9;
            SecP256K1Field.SquareN(x9, 2, x11);
            SecP256K1Field.Multiply(x11, x2, x11);
            uint[] x22 = Nat256.Create();
            SecP256K1Field.SquareN(x11, 11, x22);
            SecP256K1Field.Multiply(x22, x11, x22);
            uint[] x44 = x11;
            SecP256K1Field.SquareN(x22, 22, x44);
            SecP256K1Field.Multiply(x44, x22, x44);
            uint[] x88 = Nat256.Create();
            SecP256K1Field.SquareN(x44, 44, x88);
            SecP256K1Field.Multiply(x88, x44, x88);
            uint[] x176 = Nat256.Create();
            SecP256K1Field.SquareN(x88, 88, x176);
            SecP256K1Field.Multiply(x176, x88, x176);
            uint[] x220 = x88;
            SecP256K1Field.SquareN(x176, 44, x220);
            SecP256K1Field.Multiply(x220, x44, x220);
            uint[] x223 = x44;
            SecP256K1Field.SquareN(x220, 3, x223);
            SecP256K1Field.Multiply(x223, x3, x223);

            uint[] t1 = x223;
            SecP256K1Field.SquareN(t1, 23, t1);
            SecP256K1Field.Multiply(t1, x22, t1);
            SecP256K1Field.SquareN(t1, 6, t1);
            SecP256K1Field.Multiply(t1, x2, t1);
            SecP256K1Field.SquareN(t1, 2, t1);

            uint[] t2 = x2;
            SecP256K1Field.Square(t1, t2);

            return(Nat256.Eq(x1, t2) ? new SecP256K1FieldElement(t1) : null);
        }