void nextStep() { // compute jacobian if (_retry == 0) { _jac = _jac_func(_inputs, _weights); } // compute hessian approximation with tykhonov damping coefficient var jacT = new NRealMatrix(_jac.Rows, _jac.Columns); jacT.SetArray(_jac.ToArray()); jacT.Transpose(); var dampedHessian = new NRealMatrix(_jac.Columns, _jac.Columns); dampedHessian = jacT * _jac; for (int idxRow = 0; idxRow < dampedHessian.Rows; idxRow++) { dampedHessian.SetAt(idxRow, idxRow, new NDouble(dampedHessian[idxRow, idxRow] * (1.0 + _lambda) + 1e-10)); } var adj = new NRealMatrix(dampedHessian.Rows, 1); var y = new NRealMatrix(dampedHessian.Rows, 1); y = jacT * _error; // solve dampedHessian * adj = y LapackLib.Instance.SolveSle(dampedHessian, y, adj); var nextWeights = new NRealMatrix(1, _weights.Columns); for (int idxWeight = 0; idxWeight < nextWeights.Columns; idxWeight++) { nextWeights.SetAt(0, idxWeight, new NDouble(_weights[0, idxWeight] - adj[idxWeight, 0])); } // compute errors var error = calcError(nextWeights); var totalError = calcTotalError(error); if (totalError > _totalError) { // revert step and increase damping factor if (_retry < 100) { _lambda *= 11.0; _retry++; } else { updateWeights(); throw new StallException(); } } else { // accept step and decrease damping factor _lambda /= 9.0; _weights.SetArray(nextWeights.ToArray()); _error = error; _totalError = totalError; _retry = 0; } }
NRealMatrix calcError(NRealMatrix weights) { var error = new NRealMatrix(_inputs.Rows, 1); NRealMatrix modelOutput = _model(_inputs, weights); for (int idxError = 0; idxError < error.Rows; idxError++) { error.SetAt(idxError, 0, new NDouble(_outputs[idxError, 0] - modelOutput[idxError, 0])); } return(error); }
public static void Run(bool generate = false, bool generate_from_db = false) { Dictionary<string, string> dicSettings = new Dictionary<string, string>(); dicSettings["APP_NAME"] = "Midax"; dicSettings["PUBLISHING_START_TIME"] = "2016-01-22 08:00:00"; dicSettings["PUBLISHING_STOP_TIME"] = "2016-01-22 09:00:00"; dicSettings["REPLAY_MODE"] = "CSV"; dicSettings["REPLAY_POPUP"] = "1"; dicSettings["TRADING_START_TIME"] = "2016-01-22 08:45:00"; dicSettings["TRADING_STOP_TIME"] = "2016-01-22 08:59:00"; dicSettings["TRADING_CLOSING_TIME"] = "2016-01-22 08:57:00"; dicSettings["TRADING_MODE"] = "REPLAY"; dicSettings["TRADING_SIGNAL"] = "MacD_1_5_IX.D.DAX.DAILY.IP"; dicSettings["TRADING_LIMIT_PER_BP"] = "10"; dicSettings["TRADING_CURRENCY"] = "GBP"; Config.Settings = dicSettings; string action = generate ? "Generating" : "Testing"; var dax = new MarketData("DAX:IX.D.DAX.DAILY.IP"); List<string> tests = new List<string>(); Console.WriteLine(action + " WMA..."); // Test weighted moving average with long intervals tests.Add(@"..\..\expected_results\testWMA.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMAgen.csv"); var macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test weighted moving average with short intervals tests = new List<string>(); tests.Add(@"..\..\expected_results\testWMA2.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA2gen.csv"); dax.Clear(); macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test weighted moving average with linear time decay tests = new List<string>(); tests.Add(@"..\..\expected_results\testWMA3.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); dicSettings["TIME_DECAY_FACTOR"] = "3"; if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA3gen.csv"); dax.Clear(); macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test volume weighted moving average with linear time decay /* tests = new List<string>(); tests.Add(@"..\..\expected_results\testWMA4.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA4gen.csv"); var macDVTest = new ModelMacDVTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDVTest.StartSignals(); macDVTest.StopSignals();*/ dicSettings.Remove("TIME_DECAY_FACTOR"); // Test RSI and Correlation indicators tests = new List<string>(); tests.Add(@"..\..\expected_results\testRsiCorrel.csv"); dicSettings["INDEX_ICEDOW"] = "DOW:IceConnection_DOW"; dicSettings["INDEX_DOW"] = "DOW:IX.D.DOW.DAILY.IP"; dicSettings["INDEX_DAX"] = "DAX:IX.D.DAX.DAILY.IP"; dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testRsiCorrelgen.csv"); dax.Clear(); var icedow = new MarketData(dicSettings["INDEX_ICEDOW"]); var dow = new MarketData(dicSettings["INDEX_DOW"]); var macD = new ModelMacDTest(dax, 1, 2, 3); //var macDV = new ModelMacDVTest(icedow, 1, 2, 3, dow); var moleTest = new ModelMoleTest(macD); MarketDataConnection.Instance.Connect(null); macD.StartSignals(false); //macDV.StartSignals(false); moleTest.StartSignals(false); MarketDataConnection.Instance.StartListening(); moleTest.StopSignals(false); //macDV.StartSignals(false); macD.StopSignals(false); MarketDataConnection.Instance.StopListening(); Console.WriteLine(action + " calibration..."); // Test a 1mn linear regression var mktData = new MarketData("testLRMktData"); var updateTime = Config.ParseDateTimeLocal(dicSettings["TRADING_START_TIME"]); mktData.TimeSeries.Add(updateTime, new Price(100)); mktData.TimeSeries.Add(updateTime.AddSeconds(20), new Price(120)); mktData.TimeSeries.Add(updateTime.AddSeconds(40), new Price(140)); mktData.TimeSeries.Add(updateTime.AddSeconds(60), new Price(130)); mktData.TimeSeries.Add(updateTime.AddSeconds(80), new Price(145)); mktData.TimeSeries.Add(updateTime.AddSeconds(100), new Price(165)); mktData.TimeSeries.Add(updateTime.AddSeconds(120), new Price(145)); var linReg = new IndicatorLinearRegression(mktData, new TimeSpan(0, 2, 0)); var linRegCoeff = linReg.linearCoeff(updateTime.AddSeconds(120)); if (Math.Abs(linRegCoeff.Value - 0.821428571428573m) > 1e-8m) throw new ApplicationException("Linear regression error"); // Test the optimization of function a * cos(b * x) + b * sin(a * x) using Levenberg Marquardt LevenbergMarquardt.objective_func objFunc = (NRealMatrix x) => { NRealMatrix y = new NRealMatrix(x.Rows, 1); for (int idxRow = 0; idxRow < y.Rows; idxRow++) y.SetAt(idxRow, 0, new NDouble(2 * Math.Cos(x[idxRow, 0]) + Math.Sin(2 * x[idxRow, 0]))); return y; }; List<double> inputs = new List<double>(); Random rnd = new Random(155); for (int idxPt = 0; idxPt < 10; idxPt++) inputs.Add(rnd.NextDouble() * 2); List<Value> modelParams = new List<Value>(); modelParams.Add(new Value(-0.2)); modelParams.Add(new Value(0.3)); LevenbergMarquardt.model_func modelFunc = (NRealMatrix x, NRealMatrix weights) => { NRealMatrix y = new NRealMatrix(x.Rows, 1); double a = weights[0, 0]; double b = weights[0, 1]; for (int idxRow = 0; idxRow < y.Rows; idxRow++) y.SetAt(idxRow, 0, new NDouble(a * Math.Cos(b * x[idxRow, 0]) + b * Math.Sin(a * x[idxRow, 0]))); return y; }; Func<double,double,double,double> derA = (double a, double b, double x) => Math.Cos(b * x) + b * x * Math.Cos(a * x); Func<double,double,double,double> derB = (double a, double b, double x) => - a * x * Math.Sin(b * x) + Math.Sin(a * x); LevenbergMarquardt.model_func jacFunc = (NRealMatrix x, NRealMatrix weights) => { NRealMatrix jac = new NRealMatrix(x.Rows, 2); double a = weights[0, 0]; double b = weights[0, 1]; for (int idxRow = 0; idxRow < jac.Rows; idxRow++) { jac.SetAt(idxRow, 0, new NDouble(-derA(a, b, x[idxRow, 0]))); jac.SetAt(idxRow, 1, new NDouble(-derB(a, b, x[idxRow, 0]))); } return jac; }; LevenbergMarquardt calibModel = new LevenbergMarquardt(objFunc, inputs, modelParams, modelFunc, jacFunc); calibModel.Solve(); if (Math.Abs(modelParams[0].X - 2) > calibModel.ObjectiveError || Math.Abs(modelParams[1].X - 1) > calibModel.ObjectiveError) throw new ApplicationException("LevenbergMarquardt calibration error"); // Parity-2 problem NeuralNetwork ann = new NeuralNetwork(2, 1, new List<int>() { 2 }); List<List<double>> annInputs = new List<List<double>>(); annInputs.Add(new List<double>() { -1, -1 }); annInputs.Add(new List<double>() { -1, 1 }); annInputs.Add(new List<double>() { 1, -1 }); annInputs.Add(new List<double>() { 1, 1 }); List<List<double>> annOutputs = new List<List<double>>(); annOutputs.Add(new List<double>() { 1 }); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { 1 }); // test forward propagation ann._outputs.Neurons[0].Weights[0].X = 1; ann._outputs.Neurons[0].Weights[1].X = -1; ann._outputs.Neurons[0].Weights[2].X = -1; ann._innerLayers[0].Neurons[0].Weights[0].X = 1; ann._innerLayers[0].Neurons[0].Weights[1].X = 1; ann._innerLayers[0].Neurons[0].Weights[2].X = 1; ann._innerLayers[0].Neurons[1].Weights[0].X = 1; ann._innerLayers[0].Neurons[1].Weights[1].X = 1; ann._innerLayers[0].Neurons[1].Weights[2].X = -1; ann._inputs.Neurons[0].Value.X = -1; ann._inputs.Neurons[1].Value.X = -1; if (Math.Abs(ann._outputs.Neurons[0].Activation() - -0.38873457229297215) > calibModel.ObjectiveError) throw new ApplicationException("Neural network forward propagation error"); // Test neural network training for parity-2 problem ann = new NeuralNetwork(2, 1, new List<int>() { 2 }); ann.Train(annInputs, annOutputs); // Test neural network training for parity-3 problem ann = new NeuralNetwork(3, 1, new List<int>() { 2 }); annInputs = new List<List<double>>(); annInputs.Add(new List<double>() {-1,-1,-1}); annInputs.Add(new List<double>() {-1,-1, 1}); annInputs.Add(new List<double>() {-1, 1,-1}); annInputs.Add(new List<double>() {-1, 1, 1}); annInputs.Add(new List<double>() { 1,-1,-1}); annInputs.Add(new List<double>() { 1,-1, 1}); annInputs.Add(new List<double>() { 1, 1,-1}); annInputs.Add(new List<double>() { 1, 1, 1}); annOutputs = new List<List<double>>(); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { 1 }); annOutputs.Add(new List<double>() { 1 }); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { 1 }); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { -1 }); annOutputs.Add(new List<double>() { 1 }); ann.Train(annInputs, annOutputs); Console.WriteLine(action + " live indicators and signals..."); tests = new List<string>(); tests.Add(@"..\..\expected_results\core_22_1_2016.csv"); if (generate_from_db) dicSettings["DB_CONTACTPOINT"] = "192.168.1.26"; dicSettings["REPLAY_MODE"] = generate_from_db ? "DB" : "CSV"; dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\coregen_22_1_2016.csv"); MarketDataConnection.Instance.Connect(null); dax.Clear(); var model = new ModelMacDTest(dax); model.StartSignals(); Console.WriteLine(action + " daily indicators..."); model.StopSignals(); Thread.Sleep(1000); if (!dicSettings.ContainsKey("PUBLISHING_CSV")) { // the program is expected to throw exceptions in this scope, just press continue if you are debugging // all exceptions should be handled, and the program should terminate with a success message box // test that the right numer of trades was placed. this is an extra sanity check to make sure the program is not idle if (ReplayTester.Instance.NbProducedTrades != ReplayTester.Instance.NbExpectedTrades) model.ProcessError(string.Format("the model did not produced the expected number of trades. It produced {0} trades instead of {1} expected", ReplayTester.Instance.NbProducedTrades, ReplayTester.Instance.NbExpectedTrades)); // test trade booking MarketDataConnection.Instance = new ReplayConnection(); model = new ModelMacDTest(dax); MarketDataConnection.Instance.Connect(null); Console.WriteLine(action + " trade booking..."); var tradeTime = Config.ParseDateTimeLocal(dicSettings["TRADING_CLOSING_TIME"]).AddSeconds(-1); var tradeTest = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 10000m); var expectedTrades = new Dictionary<KeyValuePair<string, DateTime>, Trade>(); expectedTrades[new KeyValuePair<string, DateTime>("###DUMMY_TRADE_REF1###", tradeTime)] = tradeTest; ReplayTester.Instance.SetExpectedResults(null, null, expectedTrades, null); model.PTF.Subscribe(); model.PTF.BookTrade(tradeTest); Thread.Sleep(1000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != -10) throw new ApplicationException("SELL Trade booking error"); var expectedTrade = new Trade(tradeTime, dax.Id, SIGNAL_CODE.BUY, 10, 10000m); expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF2###"; expectedTrade.Id = "###DUMMY_TRADE_ID1###"; expectedTrades[new KeyValuePair<string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; model.PTF.ClosePosition(tradeTest, tradeTime); Thread.Sleep(1000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 0) throw new ApplicationException("Trade position closing error"); expectedTrade.Reference = "###DUMMY_TRADE_REF3###"; expectedTrade.Id = "###DUMMY_TRADE_ID2###"; expectedTrades[new KeyValuePair<string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; model.PTF.BookTrade(new Trade(tradeTest, true, tradeTime)); Thread.Sleep(1000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 10) throw new ApplicationException("BUY Trade booking error"); expectedTrade = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 0m); expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF4###"; expectedTrade.Id = "###DUMMY_TRADE_ID2###"; expectedTrades[new KeyValuePair<string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; Portfolio.Instance.CloseAllPositions(tradeTest.TradingTime); Thread.Sleep(1000); // test synchronization issues with the broker List<string> testsSync = new List<string>(); testsSync.Add(@"..\..\expected_results\sync.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testsSync); MarketDataConnection.Instance = new ReplayCrazySeller(); model = new ModelMacDTest(dax); Console.WriteLine(action + " synchronization..."); MarketDataConnection.Instance.Connect(null); model.StartSignals(); model.StopSignals(); testsSync = new List<string>(); testsSync.Add(@"..\..\expected_results\sync2.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testsSync); MarketDataConnection.Instance = new ReplayCrazyBuyer(); model = new ModelMacDTest(dax); MarketDataConnection.Instance.Connect(null); model.StartSignals(); model.StopSignals(); Console.WriteLine(action + " expected exceptions..."); dicSettings["REPLAY_CSV"] = Config.TestList(tests); MarketDataConnection.Instance = new ReplayConnection(); MarketDataConnection.Instance.Connect(null); List<string> testError = new List<string>(); testError.Add(@"..\..\expected_results\error.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testError); var modelErr = new ModelMacDTest(dax); string expected; bool success = false; try { MarketDataConnection.Instance.Connect(null); modelErr.StartSignals(); } catch (Exception exc) { expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.300000000000000000000000 != 9739.8"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) model.ProcessError(exc.Message, expected); } if (!success) model.ProcessError("An expected exception has not been thrown"); success = false; try { modelErr.StopSignals(); } catch (Exception exc) { model.ProcessError(exc.Message + " - Wrong daily mean exception removed"); } success = false; try { model.StopSignals(); } catch (Exception exc) { model.ProcessError(exc.Message + " - Double EOD publishing exception removed"); } success = false; try { MarketDataConnection.Instance = new ReplayConnection(); MarketDataConnection.Instance.Connect(null); model = new ModelMacDTest(new MarketData(dax.Id)); model.StartSignals(); } catch (Exception exc) { expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.300000000000000000000000 != 9739.8"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) model.ProcessError(exc.Message, expected); } if (!success) model.ProcessError("An expected exception has not been thrown"); success = false; try { MarketDataConnection.Instance.Resume(); } catch (Exception exc) { expected = "Time series do not accept values in the past"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) model.ProcessError(exc.Message, expected); } if (!success) model.ProcessError("An expected exception has not been thrown"); model.StopSignals(); success = false; } }
public static void Run(bool generate = false, bool generate_from_db = false) { Dictionary <string, string> dicSettings = new Dictionary <string, string>(); dicSettings["APP_NAME"] = "Midax"; dicSettings["PUBLISHING_START_TIME"] = "2016-01-22 08:00:00"; dicSettings["PUBLISHING_STOP_TIME"] = "2016-01-22 09:00:00"; dicSettings["REPLAY_MODE"] = "CSV"; dicSettings["REPLAY_POPUP"] = "1"; dicSettings["TRADING_START_TIME"] = "2016-01-22 08:45:00"; dicSettings["TRADING_STOP_TIME"] = "2016-01-22 08:59:00"; dicSettings["TRADING_CLOSING_TIME"] = "2016-01-22 08:57:00"; dicSettings["TRADING_MODE"] = "REPLAY"; dicSettings["TRADING_SIGNAL"] = "MacD_1_5_IX.D.DAX.DAILY.IP"; dicSettings["TRADING_LIMIT_PER_BP"] = "10"; dicSettings["TRADING_CURRENCY"] = "GBP"; Config.Settings = dicSettings; string action = generate ? "Generating" : "Testing"; var dax = new MarketData("DAX:IX.D.DAX.DAILY.IP"); List <string> tests = new List <string>(); Console.WriteLine(action + " WMA..."); // Test weighted moving average with long intervals tests.Add(@"..\..\expected_results\testWMA.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) { dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMAgen.csv"); } var macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test weighted moving average with short intervals tests = new List <string>(); tests.Add(@"..\..\expected_results\testWMA2.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) { dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA2gen.csv"); } dax.Clear(); macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test weighted moving average with linear time decay tests = new List <string>(); tests.Add(@"..\..\expected_results\testWMA3.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(tests); dicSettings["TIME_DECAY_FACTOR"] = "3"; if (generate) { dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA3gen.csv"); } dax.Clear(); macDTestWMA = new ModelMacDTest(dax, 1, 2, 3); MarketDataConnection.Instance.Connect(null); macDTestWMA.StartSignals(); macDTestWMA.StopSignals(); // Test volume weighted moving average with linear time decay /* * tests = new List<string>(); * tests.Add(@"..\..\expected_results\testWMA4.csv"); * dicSettings["REPLAY_CSV"] = Config.TestList(tests); * if (generate) * dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA4gen.csv"); * var macDVTest = new ModelMacDVTest(dax, 1, 2, 3); * MarketDataConnection.Instance.Connect(null); * macDVTest.StartSignals(); * macDVTest.StopSignals();*/ dicSettings.Remove("TIME_DECAY_FACTOR"); // Test RSI and Correlation indicators tests = new List <string>(); tests.Add(@"..\..\expected_results\testRsiCorrel.csv"); dicSettings["INDEX_ICEDOW"] = "DOW:IceConnection_DOW"; dicSettings["INDEX_DOW"] = "DOW:IX.D.DOW.DAILY.IP"; dicSettings["INDEX_DAX"] = "DAX:IX.D.DAX.DAILY.IP"; dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) { dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testRsiCorrelgen.csv"); } dax.Clear(); var icedow = new MarketData(dicSettings["INDEX_ICEDOW"]); var dow = new MarketData(dicSettings["INDEX_DOW"]); var macD = new ModelMacDTest(dax, 1, 2, 3); //var macDV = new ModelMacDVTest(icedow, 1, 2, 3, dow); var moleTest = new ModelMoleTest(macD); MarketDataConnection.Instance.Connect(null); macD.StartSignals(false); //macDV.StartSignals(false); moleTest.StartSignals(false); MarketDataConnection.Instance.StartListening(); moleTest.StopSignals(false); //macDV.StartSignals(false); macD.StopSignals(false); MarketDataConnection.Instance.StopListening(); Console.WriteLine(action + " calibration..."); // Test a 1mn linear regression var mktData = new MarketData("testLRMktData"); var updateTime = Config.ParseDateTimeLocal(dicSettings["TRADING_START_TIME"]); mktData.TimeSeries.Add(updateTime, new Price(100)); mktData.TimeSeries.Add(updateTime.AddSeconds(20), new Price(120)); mktData.TimeSeries.Add(updateTime.AddSeconds(40), new Price(140)); mktData.TimeSeries.Add(updateTime.AddSeconds(60), new Price(130)); mktData.TimeSeries.Add(updateTime.AddSeconds(80), new Price(145)); mktData.TimeSeries.Add(updateTime.AddSeconds(100), new Price(165)); mktData.TimeSeries.Add(updateTime.AddSeconds(120), new Price(145)); var linReg = new IndicatorLinearRegression(mktData, new TimeSpan(0, 2, 0)); var linRegCoeff = linReg.linearCoeff(updateTime.AddSeconds(120)); if (Math.Abs(linRegCoeff.Value - 0.821428571428573m) > 1e-8m) { throw new ApplicationException("Linear regression error"); } // Test the optimization of function a * cos(b * x) + b * sin(a * x) using Levenberg Marquardt LevenbergMarquardt.objective_func objFunc = (NRealMatrix x) => { NRealMatrix y = new NRealMatrix(x.Rows, 1); for (int idxRow = 0; idxRow < y.Rows; idxRow++) { y.SetAt(idxRow, 0, new NDouble(2 * Math.Cos(x[idxRow, 0]) + Math.Sin(2 * x[idxRow, 0]))); } return(y); }; List <double> inputs = new List <double>(); Random rnd = new Random(155); for (int idxPt = 0; idxPt < 10; idxPt++) { inputs.Add(rnd.NextDouble() * 2); } List <Value> modelParams = new List <Value>(); modelParams.Add(new Value(-0.2)); modelParams.Add(new Value(0.3)); LevenbergMarquardt.model_func modelFunc = (NRealMatrix x, NRealMatrix weights) => { NRealMatrix y = new NRealMatrix(x.Rows, 1); double a = weights[0, 0]; double b = weights[0, 1]; for (int idxRow = 0; idxRow < y.Rows; idxRow++) { y.SetAt(idxRow, 0, new NDouble(a * Math.Cos(b * x[idxRow, 0]) + b * Math.Sin(a * x[idxRow, 0]))); } return(y); }; Func <double, double, double, double> derA = (double a, double b, double x) => Math.Cos(b * x) + b * x * Math.Cos(a * x); Func <double, double, double, double> derB = (double a, double b, double x) => - a * x * Math.Sin(b * x) + Math.Sin(a * x); LevenbergMarquardt.model_func jacFunc = (NRealMatrix x, NRealMatrix weights) => { NRealMatrix jac = new NRealMatrix(x.Rows, 2); double a = weights[0, 0]; double b = weights[0, 1]; for (int idxRow = 0; idxRow < jac.Rows; idxRow++) { jac.SetAt(idxRow, 0, new NDouble(-derA(a, b, x[idxRow, 0]))); jac.SetAt(idxRow, 1, new NDouble(-derB(a, b, x[idxRow, 0]))); } return(jac); }; LevenbergMarquardt calibModel = new LevenbergMarquardt(objFunc, inputs, modelParams, modelFunc, jacFunc); calibModel.Solve(); if (Math.Abs(modelParams[0].X - 2) > calibModel.ObjectiveError || Math.Abs(modelParams[1].X - 1) > calibModel.ObjectiveError) { throw new ApplicationException("LevenbergMarquardt calibration error"); } // Parity-2 problem NeuralNetwork ann = new NeuralNetwork(2, 1, new List <int>() { 2 }); List <List <double> > annInputs = new List <List <double> >(); annInputs.Add(new List <double>() { -1, -1 }); annInputs.Add(new List <double>() { -1, 1 }); annInputs.Add(new List <double>() { 1, -1 }); annInputs.Add(new List <double>() { 1, 1 }); List <List <double> > annOutputs = new List <List <double> >(); annOutputs.Add(new List <double>() { 1 }); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { 1 }); // test forward propagation ann._outputs.Neurons[0].Weights[0].X = 1; ann._outputs.Neurons[0].Weights[1].X = -1; ann._outputs.Neurons[0].Weights[2].X = -1; ann._innerLayers[0].Neurons[0].Weights[0].X = 1; ann._innerLayers[0].Neurons[0].Weights[1].X = 1; ann._innerLayers[0].Neurons[0].Weights[2].X = 1; ann._innerLayers[0].Neurons[1].Weights[0].X = 1; ann._innerLayers[0].Neurons[1].Weights[1].X = 1; ann._innerLayers[0].Neurons[1].Weights[2].X = -1; ann._inputs.Neurons[0].Value.X = -1; ann._inputs.Neurons[1].Value.X = -1; if (Math.Abs(ann._outputs.Neurons[0].Activation() - -0.38873457229297215) > calibModel.ObjectiveError) { throw new ApplicationException("Neural network forward propagation error"); } // Test neural network training for parity-2 problem ann = new NeuralNetwork(2, 1, new List <int>() { 2 }); ann.Train(annInputs, annOutputs); // Test neural network training for parity-3 problem ann = new NeuralNetwork(3, 1, new List <int>() { 2 }); annInputs = new List <List <double> >(); annInputs.Add(new List <double>() { -1, -1, -1 }); annInputs.Add(new List <double>() { -1, -1, 1 }); annInputs.Add(new List <double>() { -1, 1, -1 }); annInputs.Add(new List <double>() { -1, 1, 1 }); annInputs.Add(new List <double>() { 1, -1, -1 }); annInputs.Add(new List <double>() { 1, -1, 1 }); annInputs.Add(new List <double>() { 1, 1, -1 }); annInputs.Add(new List <double>() { 1, 1, 1 }); annOutputs = new List <List <double> >(); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { 1 }); annOutputs.Add(new List <double>() { 1 }); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { 1 }); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { -1 }); annOutputs.Add(new List <double>() { 1 }); ann.Train(annInputs, annOutputs); Console.WriteLine(action + " live indicators and signals..."); tests = new List <string>(); tests.Add(@"..\..\expected_results\core_22_1_2016.csv"); if (generate_from_db) { dicSettings["DB_CONTACTPOINT"] = "192.168.1.26"; } dicSettings["REPLAY_MODE"] = generate_from_db ? "DB" : "CSV"; dicSettings["REPLAY_CSV"] = Config.TestList(tests); if (generate) { dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\coregen_22_1_2016.csv"); } MarketDataConnection.Instance.Connect(null); dax.Clear(); var model = new ModelMacDTest(dax); model.StartSignals(); Console.WriteLine(action + " daily indicators..."); model.StopSignals(); Thread.Sleep(1000); if (!dicSettings.ContainsKey("PUBLISHING_CSV")) { // the program is expected to throw exceptions in this scope, just press continue if you are debugging // all exceptions should be handled, and the program should terminate with a success message box // test that the right numer of trades was placed. this is an extra sanity check to make sure the program is not idle if (ReplayTester.Instance.NbProducedTrades != ReplayTester.Instance.NbExpectedTrades) { model.ProcessError(string.Format("the model did not produced the expected number of trades. It produced {0} trades instead of {1} expected", ReplayTester.Instance.NbProducedTrades, ReplayTester.Instance.NbExpectedTrades)); } // test trade booking MarketDataConnection.Instance = new ReplayConnection(true); model = new ModelMacDTest(dax); MarketDataConnection.Instance.Connect(null); Console.WriteLine(action + " trade booking..."); var tradeTime = Config.ParseDateTimeLocal(dicSettings["TRADING_CLOSING_TIME"]).AddSeconds(-1); var tradeTest = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 10000m); var expectedTrades = new Dictionary <KeyValuePair <string, DateTime>, Trade>(); expectedTrades[new KeyValuePair <string, DateTime>("###DUMMY_TRADE_REF1###", tradeTime)] = tradeTest; ReplayTester.Instance.SetExpectedResults(null, null, expectedTrades, null); var task = model.PTF.Subscribe(); task.Wait(); model.PTF.BookTrade(tradeTest, dax.Name); Thread.Sleep(5000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != -10) { throw new ApplicationException("SELL Trade booking error"); } var expectedTrade = new Trade(tradeTime, dax.Id, SIGNAL_CODE.BUY, 10, 10000m); expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF2###"; expectedTrade.Id = "###DUMMY_TRADE_ID1###"; expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; model.PTF.ClosePosition(tradeTest, tradeTime); Thread.Sleep(5000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 0) { throw new ApplicationException("Trade position closing error"); } expectedTrade.Reference = "###DUMMY_TRADE_REF3###"; expectedTrade.Id = "###DUMMY_TRADE_ID2###"; expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; model.PTF.BookTrade(new Trade(tradeTest, true, tradeTime), dax.Name); Thread.Sleep(5000); if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 10) { throw new ApplicationException("BUY Trade booking error"); } expectedTrade = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 0m); expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF4###"; expectedTrade.Id = "###DUMMY_TRADE_ID2###"; expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade; Portfolio.Instance.CloseAllPositions(tradeTest.TradingTime); Thread.Sleep(5000); // test synchronization issues with the broker List <string> testsSync = new List <string>(); testsSync.Add(@"..\..\expected_results\sync.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testsSync); MarketDataConnection.Instance = new ReplayCrazySeller(); model = new ModelMacDTest(dax); Console.WriteLine(action + " synchronization..."); MarketDataConnection.Instance.Connect(null); model.StartSignals(); model.StopSignals(); testsSync = new List <string>(); testsSync.Add(@"..\..\expected_results\sync2.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testsSync); MarketDataConnection.Instance = new ReplayCrazyBuyer(); model = new ModelMacDTest(dax); MarketDataConnection.Instance.Connect(null); model.StartSignals(); model.StopSignals(); Console.WriteLine(action + " expected exceptions..."); dicSettings["REPLAY_CSV"] = Config.TestList(tests); MarketDataConnection.Instance = new ReplayConnection(true); MarketDataConnection.Instance.Connect(null); List <string> testError = new List <string>(); testError.Add(@"..\..\expected_results\error.csv"); dicSettings["REPLAY_CSV"] = Config.TestList(testError); var modelErr = new ModelMacDTest(dax); string expected; bool success = false; try { MarketDataConnection.Instance.Connect(null); modelErr.StartSignals(); } catch (Exception exc) { expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.791666666666666666666667 != 9740.3"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) { model.ProcessError(exc.Message, expected); } } if (!success) { model.ProcessError("An expected exception has not been thrown"); } success = false; try { modelErr.StopSignals(); } catch (Exception exc) { model.ProcessError(exc.Message + " - Wrong daily mean exception removed"); } success = false; try { model.StopSignals(); } catch (Exception exc) { model.ProcessError(exc.Message + " - Double EOD publishing exception removed"); } success = false; try { MarketDataConnection.Instance = new ReplayConnection(true); MarketDataConnection.Instance.Connect(null); model = new ModelMacDTest(new MarketData(dax.Id)); model.StartSignals(); } catch (Exception exc) { expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.791666666666666666666667 != 9740.3"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) { model.ProcessError(exc.Message, expected); } } if (!success) { model.ProcessError("An expected exception has not been thrown"); } success = false; try { MarketDataConnection.Instance.Resume(); } catch (Exception exc) { expected = "Time series do not accept values in the past"; success = (exc.Message.Replace(" AM", "") == expected); if (!success) { model.ProcessError(exc.Message, expected); } } if (!success) { model.ProcessError("An expected exception has not been thrown"); } model.StopSignals(); success = false; } }
void nextStep() { // compute jacobian if (_retry == 0) _jac = _jac_func(_inputs, _weights); // compute hessian approximation with tykhonov damping coefficient var jacT = new NRealMatrix(_jac.Rows, _jac.Columns); jacT.SetArray(_jac.ToArray()); jacT.Transpose(); var dampedHessian = new NRealMatrix(_jac.Columns, _jac.Columns); dampedHessian = jacT * _jac; for (int idxRow = 0; idxRow < dampedHessian.Rows; idxRow++) dampedHessian.SetAt(idxRow, idxRow, new NDouble(dampedHessian[idxRow, idxRow] * (1.0 + _lambda) + 1e-10)); var adj = new NRealMatrix(dampedHessian.Rows, 1); var y = new NRealMatrix(dampedHessian.Rows, 1); y = jacT * _error; // solve dampedHessian * adj = y LapackLib.Instance.SolveSle(dampedHessian, y, adj); var nextWeights = new NRealMatrix(1, _weights.Columns); for (int idxWeight = 0; idxWeight < nextWeights.Columns; idxWeight++) nextWeights.SetAt(0, idxWeight, new NDouble(_weights[0, idxWeight] - adj[idxWeight, 0])); // compute errors var error = calcError(nextWeights); var totalError = calcTotalError(error); if (totalError > _totalError) { // revert step and increase damping factor if (_retry < 100) { _lambda *= 11.0; _retry++; } else { updateWeights(); throw new StallException(); } } else { // accept step and decrease damping factor _lambda /= 9.0; _weights.SetArray(nextWeights.ToArray()); _error = error; _totalError = totalError; _retry = 0; } }
NRealMatrix calcError(NRealMatrix weights) { var error = new NRealMatrix(_inputs.Rows, 1); NRealMatrix modelOutput = _model(_inputs, weights); for (int idxError = 0; idxError < error.Rows; idxError++) error.SetAt(idxError, 0, new NDouble(_outputs[idxError, 0] - modelOutput[idxError, 0])); return error; }