Exemple #1
0
        public void ConvoleSame()
        {
            var series1 = new NDArray_Legacy <double>();

            series1.Data = new double[] { 1, 2, 3 };

            var series2 = new NDArray_Legacy <double>();

            series2.Data = new double[] { 0, 1, 0.5 };

            var series3 = series1.Convolve(series2, "same");

            double[] expectedResult = new double[] { 1, 2.5, 4 };

            Assert.IsTrue(Enumerable.SequenceEqual(series3.Data.ToArray(), expectedResult));
        }
        /// <summary>
        /// Convolution of 2 series
        /// </summary>
        /// <param name="numSharpArray1"></param>
        /// <param name="numSharpArray2"></param>
        /// <param name="mode"></param>
        /// <returns></returns>
        public static NDArray_Legacy <double> Convolve(this NDArray_Legacy <double> numSharpArray1, NDArray_Legacy <double> numSharpArray2, string mode = "full")
        {
            int nf = numSharpArray1.Length;
            int ng = numSharpArray2.Length;

            var numSharpReturn = new NDArray_Legacy <double>();

            switch (mode)
            {
            case "full":
            {
                int n = nf + ng - 1;

                var outArray = new double[n];

                for (int idx = 0; idx < n; ++idx)
                {
                    int jmn = (idx >= ng - 1) ? (idx - (ng - 1)) : 0;
                    int jmx = (idx < nf - 1) ? idx : nf - 1;

                    for (int jdx = jmn; jdx <= jmx; ++jdx)
                    {
                        outArray[idx] += (numSharpArray1[jdx] * numSharpArray2[idx - jdx]);
                    }
                }

                numSharpReturn.Data = outArray;

                break;
            }

            case "valid":
            {
                var min_v = (nf < ng) ? numSharpArray1 : numSharpArray2;
                var max_v = (nf < ng) ? numSharpArray2 : numSharpArray1;

                int n = Math.Max(nf, ng) - Math.Min(nf, ng) + 1;

                double[] outArray = new double[n];

                for (int idx = 0; idx < n; ++idx)
                {
                    int kdx = idx;

                    for (int jdx = (min_v.Length - 1); jdx >= 0; --jdx)
                    {
                        outArray[idx] += min_v[jdx] * max_v[kdx];
                        ++kdx;
                    }
                }

                numSharpReturn.Data = outArray;

                break;
            }

            case "same":
            {
                // followed the discussion on
                // https://stackoverflow.com/questions/38194270/matlab-convolution-same-to-numpy-convolve
                // implemented numpy convolve because we follow numpy
                var npad = numSharpArray2.Length - 1;

                if (npad % 2 == 1)
                {
                    npad = (int)Math.Floor(((double)npad) / 2.0);

                    numSharpArray1.Data.ToList().AddRange(new double[npad + 1]);
                    var puffer = (new double[npad]).ToList();
                    puffer.AddRange(numSharpArray1.Data);
                    numSharpArray1.Data = puffer;
                }
                else
                {
                    npad = npad / 2;

                    var puffer = ((double[])numSharpArray1.Data).ToList();
                    puffer.AddRange(new double[npad]);
                    numSharpArray1.Data = puffer;

                    puffer = (new double[npad]).ToList();
                    puffer.AddRange(numSharpArray1.Data);
                    numSharpArray1.Data = puffer;
                }

                numSharpReturn = numSharpArray1.Convolve(numSharpArray2, "valid");
                break;
            }
            }
            return(numSharpReturn);
        }