public void CompareCreateRotationSpeed() { for (int i = 0; i < 100; i++) { Matrix3x2 ex1 = Matrix3x2.CreateRotation(i / Settings.Pi); Matrix3x2 ex2 = Matrex.CreateRotation(i / Settings.Pi); } int iter = 1000000; for (int j = 0; j < 10; j++) { Stopwatch w = Stopwatch.StartNew(); for (int i = 0; i < iter; i++) { Matrix3x2 ex1 = Matrix3x2.CreateRotation(i % 100 / Settings.Pi); } w.Stop(); output.WriteLine("builtin " + w.ElapsedMilliseconds.ToString()); w.Restart(); for (int i = 0; i < iter; i++) { Matrix3x2 ex1 = Matrex.CreateRotation(i % 100 / Settings.Pi); } w.Stop(); output.WriteLine("custom " + w.ElapsedMilliseconds.ToString()); } }
public bool SolveTOIPositionConstraints(int toiIndexA, int toiIndexB) { float minSeparation = 0.0f; for (int i = 0; i < _count; ++i) { ContactPositionConstraint pc = _positionConstraints[i]; int indexA = pc.indexA; int indexB = pc.indexB; Vector2 localCenterA = pc.localCenterA; Vector2 localCenterB = pc.localCenterB; int pointCount = pc.pointCount; float mA = 0.0f; float iA = 0.0f; if (indexA == toiIndexA || indexA == toiIndexB) { mA = pc.invMassA; iA = pc.invIA; } float mB = 0.0f; float iB = 0.0f; if (indexB == toiIndexA || indexB == toiIndexB) { mB = pc.invMassB; iB = pc.invIB; } Vector2 cA = _positions[indexA].c; float aA = _positions[indexA].a; Vector2 cB = _positions[indexB].c; float aB = _positions[indexB].a; // Solve normal constraints for (int j = 0; j < pointCount; ++j) { Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q = Matrex.CreateRotation(aA); // Actually about twice as fast to use our own function xfB.q = Matrex.CreateRotation(aB); // Actually about twice as fast to use our own function xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA); xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB); PositionSolverManifold psm = new PositionSolverManifold(); psm.Initialize(pc, xfA, xfB, j); Vector2 normal = psm.normal; Vector2 point = psm.point; float separation = psm.separation; Vector2 rA = point - cA; Vector2 rB = point - cB; // Track max constraint error. minSeparation = MathF.Min(minSeparation, separation); // Prevent large corrections and allow slop. float C = Math.Clamp(Settings.TOIBaumgarte * (separation + Settings.LinearSlop), -Settings.MaxLinearCorrection, 0.0f); // Compute the effective mass. float rnA = Vectex.Cross(rA, normal); float rnB = Vectex.Cross(rB, normal); float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; // Compute normal impulse float impulse = K > 0.0f ? -C / K : 0.0f; Vector2 P = impulse * normal; cA -= mA * P; aA -= iA * Vectex.Cross(rA, P); cB += mB * P; aB += iB * Vectex.Cross(rB, P); } _positions[indexA].c = cA; _positions[indexA].a = aA; _positions[indexB].c = cB; _positions[indexB].a = aB; } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return(minSeparation >= -1.5f * Settings.LinearSlop); }
public void InitializeVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; ContactPositionConstraint pc = _positionConstraints[i]; float radiusA = pc.radiusA; float radiusB = pc.radiusB; Manifold manifold = _contacts[vc.contactIndex].Manifold; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float mB = vc.invMassB; float iA = vc.invIA; float iB = vc.invIB; Vector2 localCenterA = pc.localCenterA; Vector2 localCenterB = pc.localCenterB; Vector2 cA = _positions[indexA].c; float aA = _positions[indexA].a; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 cB = _positions[indexB].c; float aB = _positions[indexB].a; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; //Debug.Assert(manifold.pointCount > 0); Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q = Matrex.CreateRotation(aA); // Actually about twice as fast to use our own function xfB.q = Matrex.CreateRotation(aB); // Actually about twice as fast to use our own function xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA); xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB); WorldManifold worldManifold = new WorldManifold(); worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); vc.normal = worldManifold.normal; int pointCount = vc.pointCount; for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; vcp.rA = worldManifold.points[j] - cA; vcp.rB = worldManifold.points[j] - cB; float rnA = Vectex.Cross(vcp.rA, vc.normal); float rnB = Vectex.Cross(vcp.rB, vc.normal); float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.normalMass = kNormal > 0f ? 1f / kNormal : 0f; Vector2 tangent = Vectex.Cross(vc.normal, 1f); float rtA = Vectex.Cross(vcp.rA, tangent); float rtB = Vectex.Cross(vcp.rB, tangent); float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.tangentMass = kTangent > 0f ? 1f / kTangent : 0f; vcp.velocityBias = 0f; float vRel = Vector2.Dot(vc.normal, vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA)); if (vRel < -Settings.VelocityThreshold) { vcp.velocityBias = -vc.restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.pointCount == 2 && Settings.BlockSolve) { VelocityConstraintPoint vcp1 = vc.points[0]; VelocityConstraintPoint vcp2 = vc.points[1]; float rn1A = Vectex.Cross(vcp1.rA, vc.normal); float rn1B = Vectex.Cross(vcp1.rB, vc.normal); float rn2A = Vectex.Cross(vcp2.rA, vc.normal); float rn2B = Vectex.Cross(vcp2.rB, vc.normal); float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K = new Matrix3x2(k11, k12, k12, k22, 0, 0); // vc.K.ex = new Vector2(k11, k12); // vc.K.ey = new Vector2(k12, k22); /*Matrix3x2*/ Matrex.Invert(vc.K, out Matrix3x2 KT); vc.normalMass = KT; } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.pointCount = 1; } } } }