Exemple #1
0
        static void Main(string[] args)
        {
            DateTime start = DateTime.Parse(args[0]);
            DateTime end   = DateTime.Parse(args[1]);

            Dictionary <string, string> dicSettings = new Dictionary <string, string>();

            dicSettings["APP_NAME"] = "Midax";
            dicSettings["TIMESERIES_MAX_RECORD_TIME_HOURS"] = "12";
            dicSettings["LIMIT"]           = "10";
            dicSettings["REPLAY_MODE"]     = "DB";
            dicSettings["DB_CONTACTPOINT"] = "192.168.1.25";
            dicSettings["REPLAY_POPUP"]    = "1";
            dicSettings["TRADING_MODE"]    = "SELECT";
            dicSettings["CALENDAR_PATH"]   = @"C:\Shared\MidaxTester\Calendar";
            dicSettings["TIME_GMT"]        = "-4";
            Config.Settings = dicSettings;

            while (start <= end)
            {
                //List<string> mktdataFiles = new List<string>();
                //mktdataFiles.Add(string.Format("..\\..\\..\\..\\DBImporter\\MktData\\mktdata_{0}_{1}_{2}.csv", start.Day, start.Month, start.Year));
                //Config.Settings["REPLAY_CSV"] = Config.TestList(mktdataFiles);
                Config.Settings["PUBLISHING_START_TIME"] = string.Format("{0}-{1}-{2} {3}:{4}:{5}", start.Year, start.Month, start.Day, 6, 25, 0);
                Config.Settings["PUBLISHING_STOP_TIME"]  = string.Format("{0}-{1}-{2} {3}:{4}:{5}", start.Year, start.Month, start.Day, 18, 0, 0);
                Config.Settings["TRADING_START_TIME"]    = string.Format("{0}-{1}-{2} {3}:{4}:{5}", start.Year, start.Month, start.Day, 8, 0, 0);
                Config.Settings["TRADING_STOP_TIME"]     = string.Format("{0}-{1}-{2} {3}:{4}:{5}", start.Year, start.Month, start.Day, 17, 0, 0);
                Config.Settings["TRADING_CLOSING_TIME"]  = string.Format("{0}-{1}-{2} {3}:{4}:{5}", start.Year, start.Month, start.Day, 16, 55, 0);
                Config.Settings["PUBLISHING_CSV"]        = string.Format("..\\..\\..\\MktSelectorData\\mktselectdata_{0}_{1}_{2}.csv", start.Day, start.Month, start.Year);

                MarketDataConnection.Instance.Connect(null);
                MarketData index = new MarketData("EURUSD:CS.D.EURUSD.TODAY.IP");
                index.Subscribe(OnUpdateMktData, null);
                MarketDataConnection.Instance.StartListening();
                MarketDataConnection.Instance.StopListening();
                index.Unsubscribe(OnUpdateMktData, null);
                index.Clear();

                do
                {
                    start = start.AddDays(1);
                }while (start.DayOfWeek == DayOfWeek.Saturday || start.DayOfWeek == DayOfWeek.Sunday);
            }
        }
Exemple #2
0
        public static void Run(bool generate = false, bool generate_from_db = false)
        {
            Dictionary <string, string> dicSettings = new Dictionary <string, string>();

            dicSettings["APP_NAME"] = "Midax";
            dicSettings["PUBLISHING_START_TIME"] = "2016-01-22 08:00:00";
            dicSettings["PUBLISHING_STOP_TIME"]  = "2016-01-22 09:00:00";
            dicSettings["REPLAY_MODE"]           = "CSV";
            dicSettings["REPLAY_POPUP"]          = "1";
            dicSettings["TRADING_START_TIME"]    = "2016-01-22 08:45:00";
            dicSettings["TRADING_STOP_TIME"]     = "2016-01-22 08:59:00";
            dicSettings["TRADING_CLOSING_TIME"]  = "2016-01-22 08:57:00";
            dicSettings["TRADING_MODE"]          = "REPLAY";
            dicSettings["TRADING_SIGNAL"]        = "MacD_1_5_IX.D.DAX.DAILY.IP";
            dicSettings["TRADING_LIMIT_PER_BP"]  = "10";
            dicSettings["TRADING_CURRENCY"]      = "GBP";
            Config.Settings = dicSettings;

            string        action = generate ? "Generating" : "Testing";
            var           dax    = new MarketData("DAX:IX.D.DAX.DAILY.IP");
            List <string> tests  = new List <string>();

            Console.WriteLine(action + " WMA...");
            // Test weighted moving average with long intervals
            tests.Add(@"..\..\expected_results\testWMA.csv");
            dicSettings["REPLAY_CSV"] = Config.TestList(tests);
            if (generate)
            {
                dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMAgen.csv");
            }
            var macDTestWMA = new ModelMacDTest(dax, 1, 2, 3);

            MarketDataConnection.Instance.Connect(null);
            macDTestWMA.StartSignals();
            macDTestWMA.StopSignals();

            // Test weighted moving average with short intervals
            tests = new List <string>();
            tests.Add(@"..\..\expected_results\testWMA2.csv");
            dicSettings["REPLAY_CSV"] = Config.TestList(tests);
            if (generate)
            {
                dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA2gen.csv");
            }
            dax.Clear();
            macDTestWMA = new ModelMacDTest(dax, 1, 2, 3);
            MarketDataConnection.Instance.Connect(null);
            macDTestWMA.StartSignals();
            macDTestWMA.StopSignals();

            // Test weighted moving average with linear time decay
            tests = new List <string>();
            tests.Add(@"..\..\expected_results\testWMA3.csv");
            dicSettings["REPLAY_CSV"]        = Config.TestList(tests);
            dicSettings["TIME_DECAY_FACTOR"] = "3";
            if (generate)
            {
                dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA3gen.csv");
            }
            dax.Clear();
            macDTestWMA = new ModelMacDTest(dax, 1, 2, 3);
            MarketDataConnection.Instance.Connect(null);
            macDTestWMA.StartSignals();
            macDTestWMA.StopSignals();

            // Test volume weighted moving average with linear time decay

            /*
             * tests = new List<string>();
             * tests.Add(@"..\..\expected_results\testWMA4.csv");
             * dicSettings["REPLAY_CSV"] = Config.TestList(tests);
             * if (generate)
             *  dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testWMA4gen.csv");
             * var macDVTest = new ModelMacDVTest(dax, 1, 2, 3);
             * MarketDataConnection.Instance.Connect(null);
             * macDVTest.StartSignals();
             * macDVTest.StopSignals();*/
            dicSettings.Remove("TIME_DECAY_FACTOR");

            // Test RSI and Correlation indicators
            tests = new List <string>();
            tests.Add(@"..\..\expected_results\testRsiCorrel.csv");
            dicSettings["INDEX_ICEDOW"] = "DOW:IceConnection_DOW";
            dicSettings["INDEX_DOW"]    = "DOW:IX.D.DOW.DAILY.IP";
            dicSettings["INDEX_DAX"]    = "DAX:IX.D.DAX.DAILY.IP";
            dicSettings["REPLAY_CSV"]   = Config.TestList(tests);
            if (generate)
            {
                dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\testRsiCorrelgen.csv");
            }
            dax.Clear();
            var icedow = new MarketData(dicSettings["INDEX_ICEDOW"]);
            var dow    = new MarketData(dicSettings["INDEX_DOW"]);
            var macD   = new ModelMacDTest(dax, 1, 2, 3);
            //var macDV = new ModelMacDVTest(icedow, 1, 2, 3, dow);
            var moleTest = new ModelMoleTest(macD);

            MarketDataConnection.Instance.Connect(null);
            macD.StartSignals(false);
            //macDV.StartSignals(false);
            moleTest.StartSignals(false);
            MarketDataConnection.Instance.StartListening();
            moleTest.StopSignals(false);
            //macDV.StartSignals(false);
            macD.StopSignals(false);
            MarketDataConnection.Instance.StopListening();

            Console.WriteLine(action + " calibration...");

            // Test a 1mn linear regression
            var mktData    = new MarketData("testLRMktData");
            var updateTime = Config.ParseDateTimeLocal(dicSettings["TRADING_START_TIME"]);

            mktData.TimeSeries.Add(updateTime, new Price(100));
            mktData.TimeSeries.Add(updateTime.AddSeconds(20), new Price(120));
            mktData.TimeSeries.Add(updateTime.AddSeconds(40), new Price(140));
            mktData.TimeSeries.Add(updateTime.AddSeconds(60), new Price(130));
            mktData.TimeSeries.Add(updateTime.AddSeconds(80), new Price(145));
            mktData.TimeSeries.Add(updateTime.AddSeconds(100), new Price(165));
            mktData.TimeSeries.Add(updateTime.AddSeconds(120), new Price(145));
            var linReg      = new IndicatorLinearRegression(mktData, new TimeSpan(0, 2, 0));
            var linRegCoeff = linReg.linearCoeff(updateTime.AddSeconds(120));

            if (Math.Abs(linRegCoeff.Value - 0.821428571428573m) > 1e-8m)
            {
                throw new ApplicationException("Linear regression error");
            }


            // Test the optimization of function a * cos(b * x) + b * sin(a * x) using Levenberg Marquardt
            LevenbergMarquardt.objective_func objFunc = (NRealMatrix x) => { NRealMatrix y = new NRealMatrix(x.Rows, 1);
                                                                             for (int idxRow = 0; idxRow < y.Rows; idxRow++)
                                                                             {
                                                                                 y.SetAt(idxRow, 0, new NDouble(2 * Math.Cos(x[idxRow, 0]) + Math.Sin(2 * x[idxRow, 0])));
                                                                             }
                                                                             return(y); };
            List <double> inputs = new List <double>();
            Random        rnd    = new Random(155);

            for (int idxPt = 0; idxPt < 10; idxPt++)
            {
                inputs.Add(rnd.NextDouble() * 2);
            }
            List <Value> modelParams = new List <Value>();

            modelParams.Add(new Value(-0.2)); modelParams.Add(new Value(0.3));
            LevenbergMarquardt.model_func modelFunc = (NRealMatrix x, NRealMatrix weights) => { NRealMatrix y = new NRealMatrix(x.Rows, 1);
                                                                                                double      a = weights[0, 0]; double b = weights[0, 1];
                                                                                                for (int idxRow = 0; idxRow < y.Rows; idxRow++)
                                                                                                {
                                                                                                    y.SetAt(idxRow, 0, new NDouble(a * Math.Cos(b * x[idxRow, 0]) + b * Math.Sin(a * x[idxRow, 0])));
                                                                                                }
                                                                                                return(y); };
            Func <double, double, double, double> derA = (double a, double b, double x) => Math.Cos(b * x) + b * x * Math.Cos(a * x);
            Func <double, double, double, double> derB = (double a, double b, double x) => - a * x * Math.Sin(b * x) + Math.Sin(a * x);

            LevenbergMarquardt.model_func jacFunc = (NRealMatrix x, NRealMatrix weights) =>
            {
                NRealMatrix jac = new NRealMatrix(x.Rows, 2);
                double      a = weights[0, 0]; double b = weights[0, 1];
                for (int idxRow = 0; idxRow < jac.Rows; idxRow++)
                {
                    jac.SetAt(idxRow, 0, new NDouble(-derA(a, b, x[idxRow, 0])));
                    jac.SetAt(idxRow, 1, new NDouble(-derB(a, b, x[idxRow, 0])));
                }
                return(jac);
            };
            LevenbergMarquardt calibModel = new LevenbergMarquardt(objFunc, inputs, modelParams, modelFunc, jacFunc);

            calibModel.Solve();
            if (Math.Abs(modelParams[0].X - 2) > calibModel.ObjectiveError || Math.Abs(modelParams[1].X - 1) > calibModel.ObjectiveError)
            {
                throw new ApplicationException("LevenbergMarquardt calibration error");
            }

            // Parity-2 problem
            NeuralNetwork ann = new NeuralNetwork(2, 1, new List <int>()
            {
                2
            });
            List <List <double> > annInputs = new List <List <double> >();

            annInputs.Add(new List <double>()
            {
                -1, -1
            });
            annInputs.Add(new List <double>()
            {
                -1, 1
            });
            annInputs.Add(new List <double>()
            {
                1, -1
            });
            annInputs.Add(new List <double>()
            {
                1, 1
            });
            List <List <double> > annOutputs = new List <List <double> >();

            annOutputs.Add(new List <double>()
            {
                1
            });
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                1
            });
            // test forward propagation
            ann._outputs.Neurons[0].Weights[0].X        = 1;
            ann._outputs.Neurons[0].Weights[1].X        = -1;
            ann._outputs.Neurons[0].Weights[2].X        = -1;
            ann._innerLayers[0].Neurons[0].Weights[0].X = 1;
            ann._innerLayers[0].Neurons[0].Weights[1].X = 1;
            ann._innerLayers[0].Neurons[0].Weights[2].X = 1;
            ann._innerLayers[0].Neurons[1].Weights[0].X = 1;
            ann._innerLayers[0].Neurons[1].Weights[1].X = 1;
            ann._innerLayers[0].Neurons[1].Weights[2].X = -1;
            ann._inputs.Neurons[0].Value.X = -1;
            ann._inputs.Neurons[1].Value.X = -1;
            if (Math.Abs(ann._outputs.Neurons[0].Activation() - -0.38873457229297215) > calibModel.ObjectiveError)
            {
                throw new ApplicationException("Neural network forward propagation error");
            }
            // Test neural network training for parity-2 problem
            ann = new NeuralNetwork(2, 1, new List <int>()
            {
                2
            });
            ann.Train(annInputs, annOutputs);

            // Test neural network training for parity-3 problem
            ann = new NeuralNetwork(3, 1, new List <int>()
            {
                2
            });
            annInputs = new List <List <double> >();
            annInputs.Add(new List <double>()
            {
                -1, -1, -1
            });
            annInputs.Add(new List <double>()
            {
                -1, -1, 1
            });
            annInputs.Add(new List <double>()
            {
                -1, 1, -1
            });
            annInputs.Add(new List <double>()
            {
                -1, 1, 1
            });
            annInputs.Add(new List <double>()
            {
                1, -1, -1
            });
            annInputs.Add(new List <double>()
            {
                1, -1, 1
            });
            annInputs.Add(new List <double>()
            {
                1, 1, -1
            });
            annInputs.Add(new List <double>()
            {
                1, 1, 1
            });
            annOutputs = new List <List <double> >();
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                1
            });
            annOutputs.Add(new List <double>()
            {
                1
            });
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                1
            });
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                -1
            });
            annOutputs.Add(new List <double>()
            {
                1
            });
            ann.Train(annInputs, annOutputs);

            Console.WriteLine(action + " live indicators and signals...");
            tests = new List <string>();
            tests.Add(@"..\..\expected_results\core_22_1_2016.csv");
            if (generate_from_db)
            {
                dicSettings["DB_CONTACTPOINT"] = "192.168.1.26";
            }
            dicSettings["REPLAY_MODE"] = generate_from_db ? "DB" : "CSV";
            dicSettings["REPLAY_CSV"]  = Config.TestList(tests);
            if (generate)
            {
                dicSettings["PUBLISHING_CSV"] = string.Format("..\\..\\expected_results\\coregen_22_1_2016.csv");
            }
            MarketDataConnection.Instance.Connect(null);
            dax.Clear();
            var model = new ModelMacDTest(dax);

            model.StartSignals();

            Console.WriteLine(action + " daily indicators...");
            model.StopSignals();
            Thread.Sleep(1000);

            if (!dicSettings.ContainsKey("PUBLISHING_CSV"))
            {
                // the program is expected to throw exceptions in this scope, just press continue if you are debugging
                // all exceptions should be handled, and the program should terminate with a success message box

                // test that the right numer of trades was placed. this is an extra sanity check to make sure the program is not idle
                if (ReplayTester.Instance.NbProducedTrades != ReplayTester.Instance.NbExpectedTrades)
                {
                    model.ProcessError(string.Format("the model did not produced the expected number of trades. It produced {0} trades instead of {1} expected",
                                                     ReplayTester.Instance.NbProducedTrades, ReplayTester.Instance.NbExpectedTrades));
                }

                // test trade booking
                MarketDataConnection.Instance = new ReplayConnection(true);
                model = new ModelMacDTest(dax);
                MarketDataConnection.Instance.Connect(null);
                Console.WriteLine(action + " trade booking...");
                var tradeTime      = Config.ParseDateTimeLocal(dicSettings["TRADING_CLOSING_TIME"]).AddSeconds(-1);
                var tradeTest      = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 10000m);
                var expectedTrades = new Dictionary <KeyValuePair <string, DateTime>, Trade>();
                expectedTrades[new KeyValuePair <string, DateTime>("###DUMMY_TRADE_REF1###", tradeTime)] = tradeTest;
                ReplayTester.Instance.SetExpectedResults(null, null, expectedTrades, null);
                var task = model.PTF.Subscribe();
                task.Wait();
                model.PTF.BookTrade(tradeTest, dax.Name);
                Thread.Sleep(5000);
                if (model.PTF.GetPosition(tradeTest.Epic).Quantity != -10)
                {
                    throw new ApplicationException("SELL Trade booking error");
                }
                var expectedTrade = new Trade(tradeTime, dax.Id, SIGNAL_CODE.BUY, 10, 10000m);
                expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF2###";
                expectedTrade.Id        = "###DUMMY_TRADE_ID1###";
                expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade;
                model.PTF.ClosePosition(tradeTest, tradeTime);
                Thread.Sleep(5000);
                if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 0)
                {
                    throw new ApplicationException("Trade position closing error");
                }
                expectedTrade.Reference = "###DUMMY_TRADE_REF3###";
                expectedTrade.Id        = "###DUMMY_TRADE_ID2###";
                expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade;
                model.PTF.BookTrade(new Trade(tradeTest, true, tradeTime), dax.Name);
                Thread.Sleep(5000);
                if (model.PTF.GetPosition(tradeTest.Epic).Quantity != 10)
                {
                    throw new ApplicationException("BUY Trade booking error");
                }
                expectedTrade           = new Trade(tradeTime, dax.Id, SIGNAL_CODE.SELL, 10, 0m);
                expectedTrade.Reference = "###CLOSE_DUMMY_TRADE_REF4###";
                expectedTrade.Id        = "###DUMMY_TRADE_ID2###";
                expectedTrades[new KeyValuePair <string, DateTime>(expectedTrade.Reference, tradeTime)] = expectedTrade;
                Portfolio.Instance.CloseAllPositions(tradeTest.TradingTime);
                Thread.Sleep(5000);

                // test synchronization issues with the broker
                List <string> testsSync = new List <string>();
                testsSync.Add(@"..\..\expected_results\sync.csv");
                dicSettings["REPLAY_CSV"]     = Config.TestList(testsSync);
                MarketDataConnection.Instance = new ReplayCrazySeller();
                model = new ModelMacDTest(dax);
                Console.WriteLine(action + " synchronization...");
                MarketDataConnection.Instance.Connect(null);
                model.StartSignals();
                model.StopSignals();
                testsSync = new List <string>();
                testsSync.Add(@"..\..\expected_results\sync2.csv");
                dicSettings["REPLAY_CSV"]     = Config.TestList(testsSync);
                MarketDataConnection.Instance = new ReplayCrazyBuyer();
                model = new ModelMacDTest(dax);
                MarketDataConnection.Instance.Connect(null);
                model.StartSignals();
                model.StopSignals();

                Console.WriteLine(action + " expected exceptions...");
                dicSettings["REPLAY_CSV"]     = Config.TestList(tests);
                MarketDataConnection.Instance = new ReplayConnection(true);
                MarketDataConnection.Instance.Connect(null);
                List <string> testError = new List <string>();
                testError.Add(@"..\..\expected_results\error.csv");
                dicSettings["REPLAY_CSV"] = Config.TestList(testError);
                var    modelErr = new ModelMacDTest(dax);
                string expected;
                bool   success = false;
                try
                {
                    MarketDataConnection.Instance.Connect(null);
                    modelErr.StartSignals();
                }
                catch (Exception exc)
                {
                    expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.791666666666666666666667 != 9740.3";
                    success  = (exc.Message.Replace(" AM", "") == expected);
                    if (!success)
                    {
                        model.ProcessError(exc.Message, expected);
                    }
                }
                if (!success)
                {
                    model.ProcessError("An expected exception has not been thrown");
                }
                success = false;
                try
                {
                    modelErr.StopSignals();
                }
                catch (Exception exc)
                {
                    model.ProcessError(exc.Message + " - Wrong daily mean exception removed");
                }
                success = false;
                try
                {
                    model.StopSignals();
                }
                catch (Exception exc)
                {
                    model.ProcessError(exc.Message + " - Double EOD publishing exception removed");
                }
                success = false;
                try
                {
                    MarketDataConnection.Instance = new ReplayConnection(true);
                    MarketDataConnection.Instance.Connect(null);
                    model = new ModelMacDTest(new MarketData(dax.Id));
                    model.StartSignals();
                }
                catch (Exception exc)
                {
                    expected = "Test failed: indicator EMA_1_IX.D.DAX.DAILY.IP time 08:30 expected value 9740.791666666666666666666667 != 9740.3";
                    success  = (exc.Message.Replace(" AM", "") == expected);
                    if (!success)
                    {
                        model.ProcessError(exc.Message, expected);
                    }
                }
                if (!success)
                {
                    model.ProcessError("An expected exception has not been thrown");
                }
                success = false;
                try
                {
                    MarketDataConnection.Instance.Resume();
                }
                catch (Exception exc)
                {
                    expected = "Time series do not accept values in the past";
                    success  = (exc.Message.Replace(" AM", "") == expected);
                    if (!success)
                    {
                        model.ProcessError(exc.Message, expected);
                    }
                }
                if (!success)
                {
                    model.ProcessError("An expected exception has not been thrown");
                }
                model.StopSignals();
                success = false;
            }
        }