public static string OutputFitResults(LinearFitBySvd fit, string[] paramNames) { // Output of results Current.Console.WriteLine(""); Current.Console.WriteLine("---- " + DateTime.Now.ToString() + " -----------------------"); Current.Console.WriteLine("Multivariate regression of order {0}", fit.NumberOfParameter); Current.Console.WriteLine("{0,-15} {1,20} {2,20} {3,20} {4,20}", "Name", "Value", "Error", "F-Value", "Prob>F"); for (int i = 0; i < fit.Parameter.Length; i++) { Current.Console.WriteLine("{0,-15} {1,20} {2,20} {3,20} {4,20}", paramNames == null ? string.Format("A{0}", i) : paramNames[i], fit.Parameter[i], fit.StandardErrorOfParameter(i), fit.TofParameter(i), 1 - FDistribution.CDF(fit.TofParameter(i), fit.NumberOfParameter, fit.NumberOfData - 1) ); } Current.Console.WriteLine("R²: {0}, Adjusted R²: {1}", fit.RSquared, fit.AdjustedRSquared); Current.Console.WriteLine("------------------------------------------------------------"); Current.Console.WriteLine("Source of Degrees of"); Current.Console.WriteLine("variation freedom Sum of Squares Mean Square F0 P value"); double regressionmeansquare = fit.RegressionCorrectedSumOfSquares / fit.NumberOfParameter; double residualmeansquare = fit.ResidualSumOfSquares / (fit.NumberOfData - fit.NumberOfParameter - 1); Current.Console.WriteLine("Regression {0,10} {1,20} {2,20} {3,20} {4,20}", fit.NumberOfParameter, fit.RegressionCorrectedSumOfSquares, fit.RegressionCorrectedSumOfSquares / fit.NumberOfParameter, regressionmeansquare / residualmeansquare, 1 - FDistribution.CDF(regressionmeansquare / residualmeansquare, fit.NumberOfParameter, fit.NumberOfData - 1) ); Current.Console.WriteLine("Residual {0,10} {1,20} {2,20}", fit.NumberOfData - 1 - fit.NumberOfParameter, fit.ResidualSumOfSquares, residualmeansquare ); Current.Console.WriteLine("Total {0,10} {1,20}", fit.NumberOfData - 1, fit.TotalCorrectedSumOfSquares ); Current.Console.WriteLine("------------------------------------------------------------"); return(null); }
public static string Fit(Altaxo.Graph.GUI.GraphController ctrl, int order, double fitCurveXmin, double fitCurveXmax, bool showFormulaOnGraph) { string error; int numberOfDataPoints; double[] xarr = null, yarr = null, earr = null; error = GetActivePlotPoints(ctrl, ref xarr, ref yarr, out numberOfDataPoints); if (null != error) { return(error); } string[] plotNames = GetActivePlotName(ctrl); // Error-Array earr = new double[numberOfDataPoints]; for (int i = 0; i < earr.Length; i++) { earr[i] = 1; } int numberOfParameter = order + 1; double[] parameter = new double[numberOfParameter]; LinearFitBySvd fit = new LinearFitBySvd( xarr, yarr, earr, numberOfDataPoints, order + 1, new FunctionBaseEvaluator(EvaluatePolynomialBase), 1E-5); // Output of results Current.Console.WriteLine(""); Current.Console.WriteLine("---- " + DateTime.Now.ToString() + " -----------------------"); Current.Console.WriteLine("Polynomial regression of order {0} of {1} over {2}", order, plotNames[1], plotNames[0]); Current.Console.WriteLine( "Name Value Error F-Value Prob>F"); for (int i = 0; i < fit.Parameter.Length; i++) { Current.Console.WriteLine("A{0,-3} {1,20} {2,20} {3,20} {4,20}", i, fit.Parameter[i], fit.StandardErrorOfParameter(i), fit.TofParameter(i), 1 - FDistribution.CDF(fit.TofParameter(i), numberOfParameter, numberOfDataPoints - 1) ); } Current.Console.WriteLine("R²: {0}, Adjusted R²: {1}", fit.RSquared, fit.AdjustedRSquared); Current.Console.WriteLine("------------------------------------------------------------"); Current.Console.WriteLine("Source of Degrees of"); Current.Console.WriteLine("variation freedom Sum of Squares Mean Square F0 P value"); double regressionmeansquare = fit.RegressionCorrectedSumOfSquares / numberOfParameter; double residualmeansquare = fit.ResidualSumOfSquares / (numberOfDataPoints - numberOfParameter - 1); Current.Console.WriteLine("Regression {0,10} {1,20} {2,20} {3,20} {4,20}", numberOfParameter, fit.RegressionCorrectedSumOfSquares, fit.RegressionCorrectedSumOfSquares / numberOfParameter, regressionmeansquare / residualmeansquare, 1 - FDistribution.CDF(regressionmeansquare / residualmeansquare, numberOfParameter, numberOfDataPoints - 1) ); Current.Console.WriteLine("Residual {0,10} {1,20} {2,20}", numberOfDataPoints - 1 - numberOfParameter, fit.ResidualSumOfSquares, residualmeansquare ); Current.Console.WriteLine("Total {0,10} {1,20}", numberOfDataPoints - 1, fit.TotalCorrectedSumOfSquares ); Current.Console.WriteLine("------------------------------------------------------------"); // add the fit curve to the graph IScalarFunctionDD plotfunction = new PolynomialFunction(fit.Parameter); XYFunctionPlotItem fittedCurve = new XYFunctionPlotItem(new XYFunctionPlotData(plotfunction), new G2DPlotStyleCollection(LineScatterPlotStyleKind.Line)); ctrl.ActiveLayer.PlotItems.Add(fittedCurve); return(null); }
public static string OutputFitResults(LinearFitBySvd fit, string[] paramNames) { // Output of results Current.Console.WriteLine(""); Current.Console.WriteLine("---- " + DateTime.Now.ToString() + " -----------------------"); Current.Console.WriteLine("Multivariate regression of order {0}",fit.NumberOfParameter); Current.Console.WriteLine("{0,-15} {1,20} {2,20} {3,20} {4,20}", "Name","Value","Error","F-Value","Prob>F"); for(int i=0;i<fit.Parameter.Length;i++) Current.Console.WriteLine("{0,-15} {1,20} {2,20} {3,20} {4,20}", paramNames==null ? string.Format("A{0}",i) : paramNames[i], fit.Parameter[i], fit.StandardErrorOfParameter(i), fit.TofParameter(i), 1-FDistribution.CDF(fit.TofParameter(i),fit.NumberOfParameter,fit.NumberOfData-1) ); Current.Console.WriteLine("R²: {0}, Adjusted R²: {1}", fit.RSquared, fit.AdjustedRSquared); Current.Console.WriteLine("------------------------------------------------------------"); Current.Console.WriteLine("Source of Degrees of"); Current.Console.WriteLine("variation freedom Sum of Squares Mean Square F0 P value"); double regressionmeansquare = fit.RegressionCorrectedSumOfSquares/fit.NumberOfParameter; double residualmeansquare = fit.ResidualSumOfSquares/(fit.NumberOfData-fit.NumberOfParameter-1); Current.Console.WriteLine("Regression {0,10} {1,20} {2,20} {3,20} {4,20}", fit.NumberOfParameter, fit.RegressionCorrectedSumOfSquares, fit.RegressionCorrectedSumOfSquares/fit.NumberOfParameter, regressionmeansquare/residualmeansquare, 1-FDistribution.CDF(regressionmeansquare/residualmeansquare,fit.NumberOfParameter,fit.NumberOfData-1) ); Current.Console.WriteLine("Residual {0,10} {1,20} {2,20}", fit.NumberOfData-1-fit.NumberOfParameter, fit.ResidualSumOfSquares, residualmeansquare ); Current.Console.WriteLine("Total {0,10} {1,20}", fit.NumberOfData-1, fit.TotalCorrectedSumOfSquares ); Current.Console.WriteLine("------------------------------------------------------------"); return null; }