/// <summary> /// Gets the curve fitter for the trend line. /// </summary> /// <param name="curveFitter">The overall days per book curve fitter.</param> private void GetDaysPerBookWithTimeCurveFitter(out ICurveFitter curveFitter) { List <double> xVals = new List <double>(); List <double> yVals = new List <double>(); foreach (BooksDelta delta in BooksReadProvider.BookDeltas) { xVals.Add(delta.DaysSinceStart); yVals.Add(delta.OverallTally.DaysPerBook); } curveFitter = new LinearCurveFitter(xVals, yVals); }
private void GetBooksInTranslationLinearCurveFitter(out ICurveFitter overallCurveFitter) { List <double> overallDays = new List <double>(); List <double> overallDaysPerBook = new List <double>(); foreach (BooksDelta delta in BooksReadProvider.BookDeltas) { overallDays.Add(delta.DaysSinceStart); overallDaysPerBook.Add(delta.OverallTally.PercentageInTranslation); } overallCurveFitter = new LinearCurveFitter(overallDays, overallDaysPerBook); }
static void Main(string[] args) { // This QuickStart sample illustrates linear least squares // curve fitting using polynomials and linear combinations // of arbitrary functions. // Linear least squares fits are calculated using the // LinearCurveFitter class: LinearCurveFitter fitter = new LinearCurveFitter(); // We use data from the National Institute for Standards // and Technology's Statistical Reference Datasets library // at http://www.itl.nist.gov/div898/strd/. // Note that, due to round-off error, the results here will not be exactly // the same as the NIST results, which were calculated using 500 digits // of precision! // We use the 'Pontius' dataset, which contains measurement data // from the calibration of load cells. The independent variable is the load. // The dependent variable is the deflection. var deflectionData = Vector.Create(.11019, .21956, .32949, .43899, .54803, .65694, .76562, .87487, .98292, 1.09146, 1.20001, 1.30822, 1.41599, 1.52399, 1.63194, 1.73947, 1.84646, 1.95392, 2.06128, 2.16844, .11052, .22018, .32939, .43886, .54798, .65739, .76596, .87474, .98300, 1.09150, 1.20004, 1.30818, 1.41613, 1.52408, 1.63159, 1.73965, 1.84696, 1.95445, 2.06177, 2.16829); var loadData = Vector.Create( 150.0, 300, 450, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 1950, 2100, 2250, 2400, 2550, 2700, 2850, 3000, 150, 300, 450, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 1950, 2100, 2250, 2400, 2550, 2700, 2850, 3000); // You must supply the curve whose parameters will be // fit to the data. The curve must inherit from LinearCombination. // // Here, we use a quadratic polynomial: fitter.Curve = new Polynomial(2); // The X values go into the XValues property: fitter.XValues = loadData; // ...and Y values go into the YValues property: fitter.YValues = deflectionData; // The Fit method performs the actual calculation: fitter.Fit(); // A var containing the parameters of the best fit // can be obtained through the // BestFitParameters property. var solution = fitter.BestFitParameters; // The standard deviations associated with each parameter // are available through the GetStandardDeviations method. var s = fitter.GetStandardDeviations(); Console.WriteLine("Calibration of load cells"); Console.WriteLine(" deflection = c1 + c2*load + c3*load^2 "); Console.WriteLine("Solution:"); Console.WriteLine("c1: {0,20:E10} {1,20:E10}", solution[0], s[0]); Console.WriteLine("c2: {0,20:E10} {1,20:E10}", solution[1], s[1]); Console.WriteLine("c3: {0,20:E10} {1,20:E10}", solution[2], s[2]); Console.WriteLine("Residual sum of squares: {0}", fitter.Residuals.Norm()); // Now let's redo the same operation, but with observations weighted // by 1/Y^2. To do this, we set the WeightFunction property. // The WeightFunctions class defines a set of ready-to-use weight functions. fitter.WeightFunction = WeightFunctions.OneOverYSquared; // Refit the curve: fitter.Fit(); solution = fitter.BestFitParameters; s = fitter.GetStandardDeviations(); // The solution is slightly different: Console.WriteLine("Solution (weighted observations):"); Console.WriteLine("c1: {0,20:E10} {1,20:E10}", solution[0], s[0]); Console.WriteLine("c2: {0,20:E10} {1,20:E10}", solution[1], s[1]); Console.WriteLine("c3: {0,20:E10} {1,20:E10}", solution[2], s[2]); Console.WriteLine(); // // Fitting combinations of arbitrary functions // // The following example estimates the two parameters, c1 and c2 // in the theoretical model for conductance: // k(T) = 1 / (c1 / T + c2 * T*T) var temperature = Vector.Create(12.2900, 13.7500, 14.8200, 16.1200, 18.0400, 18.6700, 20.5200, 22.6800, 25.1500, 27.7200, 30.2400, 33.2100, 36.4800, 39.8600, 50.4000); var conductance = Vector.Create(25.3500, 27.8800, 29.9300, 30.4200, 31.0000, 31.9600, 32.4700, 30.3300, 31.1400, 27.4600, 23.2900, 20.7200, 17.2400, 14.7100, 9.5000); // First, we transform the dependent variable: var y = Vector.Reciprocal(conductance); // y is a linear combination of basis functions 1/T and T*T. // Create a function basis object: Func <double, double>[] basisFunctions = new Func <double, double>[] { new Func <double, double>(f1), new Func <double, double>(f2) }; GeneralFunctionBasis basis = new GeneralFunctionBasis(basisFunctions); // Create a LinearCombination curve using this function basis: LinearCombination curve = new LinearCombination(basis); // Set the curve fitter properties: fitter.Curve = curve; fitter.XValues = temperature; fitter.YValues = y; // Reset the weights fitter.WeightFunction = null; fitter.WeightVector = null; // Now compute the solution: fitter.Fit(); solution = fitter.BestFitParameters; s = fitter.GetStandardDeviations(); // Print the results Console.WriteLine("Conductance of copper: k(T) = 1 / (c1/T + c2*T^2)"); Console.WriteLine("Solution:"); Console.WriteLine("c1: {0,20:E10} {1,20:E10}", solution[0], s[0]); Console.WriteLine("c2: {0,20:E10} {1,20:E10}", solution[1], s[1]); Console.WriteLine("Residual sum of squares: {0}", fitter.Residuals.Norm()); Console.Write("Press Enter key to exit..."); Console.ReadLine(); }