Exemple #1
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="label">The label, or dependent variable.</param>
        /// <param name="features">The features, or independent variables.</param>
        /// <param name="weights">The optional example weights.</param>
        /// <param name="options">Advanced arguments to the algorithm.</param>
        /// <param name="onFit">A delegate that is called every time the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
        /// the linear model that was trained.  Note that this action cannot change the result in any way; it is only a way for the caller to
        /// be informed about what was learnt.</param>
        /// <returns>The predicted output.</returns>
        public static Scalar <float> LbfgsPoissonRegression(this RegressionCatalog.RegressionTrainers catalog,
                                                            Scalar <float> label,
                                                            Vector <float> features,
                                                            Scalar <float> weights,
                                                            LbfgsPoissonRegressionTrainer.Options options,
                                                            Action <PoissonRegressionModelParameters> onFit = null)
        {
            Contracts.CheckValue(label, nameof(label));
            Contracts.CheckValue(features, nameof(features));
            Contracts.CheckValue(options, nameof(options));
            Contracts.CheckValueOrNull(onFit);

            var rec = new TrainerEstimatorReconciler.Regression(
                (env, labelName, featuresName, weightsName) =>
            {
                options.LabelColumnName         = labelName;
                options.FeatureColumnName       = featuresName;
                options.ExampleWeightColumnName = weightsName;

                var trainer = new LbfgsPoissonRegressionTrainer(env, options);

                if (onFit != null)
                {
                    return(trainer.WithOnFitDelegate(trans => onFit(trans.Model)));
                }

                return(trainer);
            }, label, features, weights);

            return(rec.Score);
        }
Exemple #2
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="label">The label, or dependent variable.</param>
        /// <param name="features">The features, or independent variables.</param>
        /// <param name="weights">The optional example weights.</param>
        /// <param name="enforceNonNegativity">Enforce non-negative weights.</param>
        /// <param name="l1Regularization">Weight of L1 regularization term.</param>
        /// <param name="l2Regularization">Weight of L2 regularization term.</param>
        /// <param name="historySize">Memory size for <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/>. Low=faster, less accurate.</param>
        /// <param name="optimizationTolerance">Threshold for optimizer convergence.</param>
        /// <param name="onFit">A delegate that is called every time the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
        /// the linear model that was trained.  Note that this action cannot change the result in any way; it is only a way for the caller to
        /// be informed about what was learnt.</param>
        /// <returns>The predicted output.</returns>
        public static Scalar <float> LbfgsPoissonRegression(this RegressionCatalog.RegressionTrainers catalog,
                                                            Scalar <float> label,
                                                            Vector <float> features,
                                                            Scalar <float> weights      = null,
                                                            float l1Regularization      = Options.Defaults.L1Regularization,
                                                            float l2Regularization      = Options.Defaults.L2Regularization,
                                                            float optimizationTolerance = Options.Defaults.OptimizationTolerance,
                                                            int historySize             = Options.Defaults.HistorySize,
                                                            bool enforceNonNegativity   = Options.Defaults.EnforceNonNegativity,
                                                            Action <PoissonRegressionModelParameters> onFit = null)
        {
            LbfgsStaticUtils.ValidateParams(label, features, weights, l1Regularization, l2Regularization, optimizationTolerance, historySize, enforceNonNegativity, onFit);

            var rec = new TrainerEstimatorReconciler.Regression(
                (env, labelName, featuresName, weightsName) =>
            {
                var trainer = new LbfgsPoissonRegressionTrainer(env, labelName, featuresName, weightsName,
                                                                l1Regularization, l2Regularization, optimizationTolerance, historySize, enforceNonNegativity);

                if (onFit != null)
                {
                    return(trainer.WithOnFitDelegate(trans => onFit(trans.Model)));
                }

                return(trainer);
            }, label, features, weights);

            return(rec.Score);
        }