public LasPoint.ClassificationType[] Classify(LasFile file)
        {
            Stopwatch           sw     = Stopwatch.StartNew();
            LasPointDataRecords points = file.LasPointDataRecords;

            LasPoint.ClassificationType[] output = new LasPoint.ClassificationType[points.Count];
            Statistics stats = new Statistics();

            stats.Count = points.Count;
            for (int i = 0; i < points.Count; i++)
            {
                LasPoint3Short point   = (LasPoint3Short)points[i];
                double         green   = point.Green - (point.Red + point.Blue) / 2;
                IMLData        classed = Network.Compute(
                    new BasicMLData(new double[] { file.LasHeader.ScaleZ(point.Z), point.Intensity, green }));
                output[i] = Utills.QuickClassess[classed.IndexOfMax()];
                if (output[i] != points[i].Classification)
                {
                    stats.ClassErrors[(int)points[i].Classification]++;
                }
                stats.PredictionMatrix[(int)points[i].Classification, (int)output[i]]++;
                stats.ClassCount[(int)output[i]]++;
                stats.ClassRealCount[(int)points[i].Classification]++;
                if (i % 1000 == 0)
                {
                    Console.WriteLine(i);
                }
            }
            Console.Write(stats.ToString());
            sw.Stop();
            Console.WriteLine("Czas trwania [" + sw.Elapsed.TotalSeconds.ToString() + "s]");
            stats.SaveMatrixAsCSV();
            return(output);
        }
Exemple #2
0
 public static double[] ClassToVector(LasPoint.ClassificationType classType)
 {
     double[] ideal = new double[] { 0, 0, 0, 0, 0, 0 };
     if (classType == LasPoint.ClassificationType.Building)
     {
         ideal[0] = 1;
     }
     else if (classType == LasPoint.ClassificationType.MediumVegetation)
     {
         ideal[1] = 1;
     }
     else if (classType == LasPoint.ClassificationType.HighVegetation)
     {
         ideal[2] = 1;
     }
     else if (classType == LasPoint.ClassificationType.LowVegetation)
     {
         ideal[3] = 1;
     }
     else if (classType == LasPoint.ClassificationType.Ground)
     {
         ideal[4] = 1;
     }
     else if (classType == LasPoint.ClassificationType.Water)
     {
         ideal[5] = 1;
     }
     return(ideal);
 }
Exemple #3
0
        public List <LasPoint> GetPointsByClassification(LasPoint.ClassificationType classType, double frac)
        {
            var        random = new Random();
            List <int> points;

            if (!_classificationMap.TryGetValue(classType, out points))
            {
                points = new List <int>();
            }
            int count = (int)Math.Floor(points.Count * frac);

            return(Enumerable.Range(0, count).Select(i => points[random.Next(points.Count - 1)]).Select(el => this[el]).ToList());
        }
Exemple #4
0
        public LasPoint.ClassificationType[] Classify(LasFile file, int count = 0)
        {
            var sw = Stopwatch.StartNew();
            LasPointDataRecords points = file.LasPointDataRecords;

            if (count == 0 || count > points.Count)
            {
                count = points.Count;
            }
            LasPoint.ClassificationType[] output = new LasPoint.ClassificationType[count];
            Statistics stats = new Statistics();

            stats.Count = count;
            OpenTK.Vector3[] abc = new OpenTK.Vector3[count];
            Parallel.For(0, count, (i) =>
            {
                abc[i] = LinearRegression.ComputeRegressionPoint(file, points[i], regressionCount, regressionRange);
                if (i % 1000 == 0)
                {
                    Console.WriteLine(i);
                }
            });
            for (int i = 0; i < count; i++)
            {
                //double[] regression = LinearRegression.ComputeRegressionNumerics(file, points[i], regressionCount, regressionRange);
                LasPoint3Short point = (LasPoint3Short)points[i];
                //OpenTK.Vector3 abc = LinearRegression.ComputeRegressionPoint(file, points[i], regressionCount, regressionRange);
                double  distanceFromPlane = Utills.DistanceFromPlane(point, abc[i]);
                double  green             = point.Green - (point.Red + point.Blue) / 2;
                IMLData classed           = Network.Compute(new BasicMLData(new double[] { green, file.LasHeader.ScaleZ(point.Z), point.Intensity,
                                                                                           abc[i].X, abc[i].Y, abc[i].Z, distanceFromPlane }));
                output[i] = Utills.QuickClassess[classed.IndexOfMax()];
                if (output[i] != points[i].Classification)
                {
                    stats.ClassErrors[(int)points[i].Classification]++;
                }
                stats.ClassCount[(int)output[i]]++;
                stats.ClassRealCount[(int)points[i].Classification]++;
                stats.PredictionMatrix[(int)points[i].Classification, (int)output[i]]++;
                if (i % 1000 == 0)
                {
                    Console.WriteLine(i);
                }
            }
            Console.Write(stats.ToString());
            sw.Stop();
            Console.WriteLine("Czas trwania [" + sw.Elapsed.TotalSeconds.ToString() + "s]");
            stats.SaveMatrixAsCSV();
            return(output);
        }
Exemple #5
0
 public static bool IsSignificant(LasPoint.ClassificationType clType)
 {
     switch (clType)
     {
     case LasPoint.ClassificationType.Ground:
     case LasPoint.ClassificationType.LowVegetation:
     case LasPoint.ClassificationType.MediumVegetation:
     case LasPoint.ClassificationType.HighVegetation:
     case LasPoint.ClassificationType.Building:
     case LasPoint.ClassificationType.Water:
         return(true);
     }
     return(false);
 }
        public LasPoint.ClassificationType[] Classify(LasFile file)
        {
            var sw = Stopwatch.StartNew();
            LasPointDataRecords points = file.LasPointDataRecords;
            int pointsCount            = points.Count();

            LasPoint.ClassificationType[] output = new LasPoint.ClassificationType[pointsCount];
            Statistics stats = new Statistics();

            stats.Count = pointsCount;
            OpenTK.Vector3[] slopeVector = new OpenTK.Vector3[pointsCount];

            Parallel.For(0, pointsCount, (i) =>
            {
                slopeVector[i] = LinearRegression.ComputeRegressionPoint(file, points[i], regressionCount, regressionRange);
                if (i % 1000 == 0)
                {
                    Console.WriteLine("ComputeRegression " + i);
                }
            });

            for (int i = 0; i < pointsCount; i++)
            {
                LasPoint3Short point             = (LasPoint3Short)points[i];
                double         distanceFromPlane = Utills.DistanceFromPlane(point, slopeVector[i]);
                double         green             = point.Green - (point.Red + point.Blue) / 2;

                output[i] = Utills.ClassificationClasses[knn.Compute(new double[] { green,
                                                                                    file.LasHeader.ScaleZ(point.Z), point.Intensity, slopeVector[i].X,
                                                                                    slopeVector[i].Y, slopeVector[i].Z, distanceFromPlane })];

                if (output[i] != points[i].Classification)
                {
                    stats.ClassErrors[(int)points[i].Classification]++;
                }
                stats.ClassCount[(int)output[i]]++;
                stats.ClassRealCount[(int)points[i].Classification]++;
                stats.PredictionMatrix[(int)points[i].Classification, (int)output[i]]++;
                if (i % 1000 == 0)
                {
                    Console.WriteLine(i);
                }
            }
            Console.Write(stats.ToString());
            sw.Stop();
            Console.WriteLine("Czas trwania [" + sw.Elapsed.TotalSeconds.ToString() + "s]");
            stats.SaveMatrixAsCSV();
            return(output);
        }
Exemple #7
0
 public List <LasPoint> GetPointsByClassification(LasPoint.ClassificationType classType)
 {
     return(_classificationMap[classType].Select(el => this[el]).ToList());
 }