double[] CombinedOldAndNewTargets()
    {
        double[] loadedTargets = ValfriStatic.Targets;

        if (ValfriStatic.AddedPoints == null)
        {
            return(loadedTargets);
        }

        double[][] addedTargets = ListToMatrix(ValfriStatic.AddedPoints);

        double[] combinedData = new double[loadedTargets.Length + addedTargets.Length];

        int i = 0;

        foreach (var point in loadedTargets)
        {
            combinedData[i++] = point;
        }
        foreach (var point in addedTargets)
        {
            combinedData[i++] = Knn.Classify(point, ValfriStatic.MatrixOfPoints, Dataset.NumberOfFeatures, Dataset.K);
        }
        return(combinedData);
    }
Exemple #2
0
        private IEnumerable <Bitmap> DoRecognize(Bitmap b)
        {
            List <Bitmap> Result = new List <Bitmap>();

            var NotClassifiedFeatures        = FeatureExtractor.ExtractFeatures(b, null);
            List <SURFFeature> FeatureRemain = new List <SURFFeature>();

            Parallel.ForEach(NotClassifiedFeatures, (NotClassifiedFeature) =>
            {
                var KnnResult = knn.Classify(k, NotClassifiedFeature);

                if (KnnResult.Confidence >= ConfidenceThreshold)
                {
                    lock (FeatureRemain)
                        FeatureRemain.Add(NotClassifiedFeature);
                }
            });


            var    GroupedFeatureRemains = FeatureRemain.GroupBy(x => x.Tag);
            Bitmap FinalResult           = (Bitmap)b.Clone();
            //Draw Features
            FeaturesMarker featuresMarker = new FeaturesMarker(FeatureRemain.Select(x => x.Original));
            Bitmap         MarkedBitmap   = featuresMarker.Apply(b);

            //Draw bounding box
            foreach (var GroupedFeatureRemain in GroupedFeatureRemains)
            {
                string Tag = GroupedFeatureRemain.Key;

                Point2DGrouper point2DGrouper = new Point2DGrouper(MaximumPointGroupDistance)
                {
                    MinimumGroupCount = MinimumPointGroupCount
                };
                var BoundingBoxes = point2DGrouper
                                    .GetGrouped2DPoints(GroupedFeatureRemain.Select(f => f.GetLocation()))
                                    .GroupBy(p => p.GroupID)
                                    .Select(group => group.GetBoundingBox(MinimumPointGroupArea))
                                    .Where(bbox => bbox != null);
                var ObjectBox = BoundingBoxes.GetBoundingBox();

                Brush brush = SelectBrush(Tag);
                if (BoundingBoxes != null)
                {
                    MarkedBitmap.DrawRect(BoundingBoxes.Select(boxes => boxes.ToRectangle()), brush, 3, "Bbox:" + Tag);
                }
                if (ObjectBox != null)
                {
                    FinalResult.DrawRect(ObjectBox.ToRectangle(), brush, 3, "Object:" + Tag);
                }
            }

            FinalResult.Tag  = "Final Result";
            MarkedBitmap.Tag = "Class Bounding Boxes";
            Result.Add(FinalResult);
            Result.Add(MarkedBitmap);

            return(Result);
        }
Exemple #3
0
        private void Classify_btn_Click(object sender, EventArgs e)
        {
            using (Bitmap ResizedInput = new Bitmap(InputPictureBox.Image, 28, 28))
            {
                RawImage28x28 NewInput = new RawImage28x28(ResizedInput, null);
                NewInput.Print();

                Knn?.Classify(Convert.ToInt32(Knn_KValue_Textbox.Text), NewInput);
                Kmeans?.Classify(NewInput);
            }
        }
    List <GameObject> CreatePies(List <List <double> > matrix, bool mark = false)
    {
        List <GameObject> pies = new List <GameObject>();

        for (int i = 0; i < matrix.Count; i++)
        {
            GameObject pie = CreatePie(matrix[i].ToArray(), Knn.Classify(matrix[i].ToArray(), ValfriStatic.MatrixOfPoints, Dataset.NumberOfFeatures, Dataset.K), mark);
            pies.Add(pie);
        }
        return(pies);
    }
Exemple #5
0
        static void Main(string[] args)
        {
            var start = new APoint {
                X = 0, Y = 0
            };
            var target = new APoint {
                X = 5, Y = 4
            };

            //var DFSmatrix = Common.GetRandomMatrix(7, 7);
            //var dfsMatrix = Algorithms.DFS(DFSmatrix, start, target);
            //Console.WriteLine("DFS path: ");
            //Common.PrettyPrint(dfsMatrix, 7, 7);

            //Console.WriteLine("---------------------------");

            //var BFSmatrix = Common.GetRandomMatrix(7, 7);
            //var bfsMatrix = Algorithms.BFS(BFSmatrix, start, target);
            //Console.WriteLine("BFS path: ");
            //Common.PrettyPrint(bfsMatrix, 7, 7);

            //var idsMatrix = Common.GetRandomMatrix(7, 7);
            //IDS.Matrix = idsMatrix;
            //IDS.Run(start, target);
            //Console.WriteLine("IDS path: ");
            //Common.PrettyPrint(idsMatrix, 7, 7);

            //var aStarMatrix = Common.GetRandomMatrix(7, 7);
            //InformedAlgs.Matrix = aStarMatrix;
            //InformedAlgs.AStar(start, target);
            //Console.WriteLine("A-Star path: ");
            //Console.WriteLine(InformedAlgs.PathLength);
            //Common.PrettyPrint(aStarMatrix, 7, 7);

            //int n = 1000;
            //QueensProblem queensProblem = new QueensProblem(n);
            //queensProblem.Solve();
            //queensProblem.GetSolution(n);

            //var knapsack = new Knapsack();
            //knapsack.InitializeItems();
            //Generator generator = new Generator(knapsack);
            //generator.Solve();
            //Console.Read();

            var knn = new Knn();

            knn.InitializeSets();
            int k = 12;

            knn.Classify(k);
            Console.WriteLine("Accuracy: " + knn.predictedAnswers * 100 / 20 + "%");
        }
Exemple #6
0
        public static void KnnMain()
        {
            Console.WriteLine("Using demo setup?[y/n]");
            string str = Console.ReadLine();

            if (str.ToLower().Contains("y") == false)
            {
                Console.WriteLine("Input node maximum value:(Default:10000)");
                NodesMaxValueSet = Convert.ToInt32(Console.ReadLine());
                Console.WriteLine("Input node count:(Default:150)");
                NodesSet = Convert.ToInt32(Console.ReadLine());
                Console.WriteLine("Input groups count for random points to divid into:(Default:3, Min:1)");
                DataGroupCount = Convert.ToInt32(Console.ReadLine());
                Console.WriteLine("Input fluctuation ratio:(Default:0.5, Min:0.1)");
                FluctuationRatio = Convert.ToSingle(Console.ReadLine());

                Console.WriteLine("Input new node count:(Default:10)");
                NewNodesCount = Convert.ToInt32(Console.ReadLine());
                Console.WriteLine("Input k set:(Default:7)");
                k = Convert.ToInt32(Console.ReadLine());
            }

            //Gen grouped random nodes
            Random2DPoints.OnGeneratePointGroups += Random2DPoints_OnGeneratePointGroups;
            var ClassifiedPoints = Random2DPoints.GenerateRandomPointsGroup(NodesMaxValueSet, NodesSet, DataGroupCount, FluctuationRatio);
            var Dataset          = new VectorCollection <Point2D>(ClassifiedPoints);

            Dataset.Print();

            var           knnTrainer = new KnnTrainer <Point2D>(Dataset);
            Knn <Point2D> knn        = new Knn <Point2D>(knnTrainer.Train());

            knn.OnClassify += Knn_OnClassify;

            while (Retry)
            {
                var NewNodes = Random2DPoints.GenerateRandomPoints(NodesMaxValueSet, NewNodesCount);

                foreach (var NewNode in NewNodes)
                {
                    knn.Classify(k, NewNode);
                }

                InputCommand();
            }
        }
Exemple #7
0
    public static void NewPrediction()
    {
        if (usedFeatures.Count > 0)
        {
            NewDataPoints[0][usedFeatures[0]] = newPred[0];
            NewDataPoints[0][usedFeatures[1]] = newPred[1];
            NewDataPoints[0][usedFeatures[2]] = newPred[2];
        }
        else
        {
            NewDataPoints[0][NewDataPoints[0].Keys.ElementAt(1)] = newPred[0];
            NewDataPoints[0][NewDataPoints[0].Keys.ElementAt(2)] = newPred[1];
            NewDataPoints[0][NewDataPoints[0].Keys.ElementAt(3)] = newPred[2];
        }

        var obj        = CreateNewObject(NewDataPoints[0].Keys.Count() - 2, NewDataPoints[0]);
        var classified = Knn.Classify(obj, DictToMatrix.DictionaryListToMatrix(ListOfPoints), GetNumberOfTargets(GetDataSetTargets()), K);

        if (classified is - 1)
        {
            return;
        }
    public void Save()
    {
        List <double> point = scrollScript.GetInputs();

        Debug.Log(point.Count);


        GameObject pieInitiator = GameObject.Find("DataInitiator");

        var pieInitiatorScript = (PieController)pieInitiator.GetComponent(typeof(PieController));

        int target = Knn.Classify(point.ToArray(), ValfriStatic.MatrixOfPoints, Dataset.NumberOfFeatures, Dataset.K);

        var canvas = GameObject.Find("Canvas");

        var newPie = pieInitiatorScript.CreatePie(point.ToArray(), target);
        var KPCA   = KernalPca.Transform(point.ToArray());

        Display.Pie(newPie, canvas);
        Display.SetPosition(newPie, (float)KPCA[0], (float)KPCA[1], 0, true);

        Delete();
    }