Exemple #1
0
        public void TestKnearestClassification()
        {
            var r           = new Random();
            var clusters    = new Dictionary <int, IEnumerable <GenericVector> >();
            var samplePoint = new GenericVector(96, 86);
            var clus        = 1;

            for (int i = 50; i < 201; i += 50)
            {
                var sampleData = new List <GenericVector>();
                for (int j = 0; j < 4; j++)
                {
                    sampleData.Add(new GenericVector(r.Next(i - 10, i), r.Next(i - 10, i)));
                }
                clusters[clus++] = sampleData;
            }

            var kNearest = new KnearestClassification(clusters, 3);

            Assert.Equal(2, kNearest.ClassifyPoint(samplePoint));
        }
Exemple #2
0
        public string CreateGraph(Stud dataA, Stud dataB, bool kmeans, bool dbscan, bool linearregression,
                                  bool polynomialregression, bool pearsoncorrelation, bool spearmancorrelation, bool knearest, bool naivebayes)
        {
            var gradedStudents   = Students.StudentsGraded;
            var classifyungraded = knearest || naivebayes;

            if (classifyungraded)
            {
                var grades   = new Dictionary <int, double>();
                var clusters = new Dbscan(210, 3,
                                          Students.StudentsGraded.Select(x => x.ToGenericVector(Stud.Attempts, Stud.Class, Stud.FailRatio,
                                                                                                Stud.Fails, Stud.Succeeds, Stud.SuccessRatio, Stud.Grade)));

                foreach (var cluster in clusters.DataClusters)
                {
                    grades[cluster.Key] = cluster.Value.Sum(x => x[6]) / cluster.Value.Count();
                }
                Classification classification = new NaiveBayesClassification(clusters.DataClusters, 50000);
                if (knearest)
                {
                    classification = new KnearestClassification(clusters.DataClusters, 5);
                }


                foreach (var student in Students.StudentsUngraded)
                {
                    var cluster = classification.ClassifyPoint(student.ToGenericVector(Stud.Attempts, Stud.Class,
                                                                                       Stud.FailRatio, Stud.Fails, Stud.Succeeds, Stud.SuccessRatio, Stud.Grade));

                    student.Grade = (int)grades[cluster];
                    gradedStudents.Add(student);
                }
            }

            var list = new List <int>();
            var a    = list
                       .GroupBy(x => x)
                       .Select(x => x.OrderBy(y => y))
                       .Select(x => x.First());


            foreach (var student in gradedStudents)
            {
                student.Filter();
            }

            var data = new Dataset(gradedStudents.Select(x => x.ToGenericVector(dataA, dataB)));

            var highChart = new HighchartsAdapter(Highchart.Scatterplot);



            //Dbscan removes outliers, so we have to change are dataset afterwards
            if (dbscan)
            {
                var newData = new List <GenericVector>();
                var dBscan  = new Dbscan(50, 3, data);
                foreach (var cluster in dBscan.DataClusters)
                {
                    newData.AddRange(cluster.Value);
                }
                data = new Dataset(newData);
                highChart.AddClusters(dBscan);
            }

            if (kmeans)
            {
                highChart.AddClusters(new Kmeans(4, 100, data));
            }


            if (linearregression)
            {
                highChart.AddRegression(new LinearRegression(data.Select(x => x.ToVector2())));
            }

            if (polynomialregression)
            {
                highChart.AddRegression(new PolynomialRegression(data.Select(x => x.ToVector2()), 3));
            }

            if (pearsoncorrelation)
            {
                highChart.AddCorrelation(new PearsonCorrelation(data.Select(x => x.ToVector2())));
            }

            if (spearmancorrelation)
            {
                highChart.AddCorrelation(new SpearmanCorrelation(data.Select(x => x.ToVector2())));
            }


            highChart.SetDivId("plotkmeans");
            highChart.SetTitle($"{dataA} vs {dataB}");
            highChart.SetXlabel(dataA.ToString());
            highChart.SetYlabel(dataB.ToString());

            return(highChart.CreateTemplate());
        }