public void TestRandomNormalInitialization() { var initialization = Initializations.RandomNormal(); initialization.SetSeed(0); var initializedMatrix = initialization.Initialize(2, 2); var expectedMatrix = Matrix <double> .Build.Random(2, 2, new Normal(new Random(0))); Console.WriteLine(initializedMatrix); Console.WriteLine(expectedMatrix); Assert.AreEqual(initializedMatrix, expectedMatrix); }
static void Main(string[] args) { var X = Matrix <double> .Build.Random(5, 100); var Y = Matrix <double> .Build.Random(1, 100); var test = Matrix <double> .Build.Random(5, 1); var model = new DeepCat(); model.Add(new Dense(5, Activations.Relu(), weightInitializer: Initializations.RandomNormal())); model.Add(new Dense(5, Activations.Relu(), weightInitializer: Initializations.RandomNormal())); model.Add(new Dense(1, Activations.Sigmoid())); model.Compile(X.RowCount, LossFunctions.CrossEntropy(), Optimizers.GradientDescent(0.002)); model.Fit(X, Y, 100); model.Predict(test); var x = 1; }