private static void subtestIris(double[][] x, double[][] y, double[][] tx, double[][] ty, ITraining bprop) { KMEANSExtractorI extractor = new KMEANSExtractorI(15); var timer = Stopwatch.StartNew(); ANFIS fis = ANFISBuilder <GaussianRule2> .Build(x, y, extractor, bprop, 1000); timer.Stop(); double err = bprop.Error(tx, ty, fis.RuleBase); double correctClass = 0; for (int i = 0; i < tx.Length; i++) { double[] o = fis.Inference(tx[i]); for (int j = 0; j < ty[i].Length; j++) { if (ty[i][j] == 1.0 && o[j] == o.Max()) { correctClass++; } } } Trace.WriteLine(string.Format("[{1}]\tIris Dataset Error {0} Classification Error {4}\tElapsed {2}\tRuleBase {3}", err, bprop.GetType().Name, timer.Elapsed, fis.RuleBase.Length, 1.0 - correctClass / ty.Length), "training"); Assert.IsFalse(ty.Length - correctClass > 2); }
private static void subtestLogisticsMap <T>(double[][] x, double[][] y, double[][] tx, double[][] ty, ITraining bprop) where T : IRule, new() { KMEANSExtractorIO extractor = new KMEANSExtractorIO(10); var timer = Stopwatch.StartNew(); ANFIS fis = ANFISBuilder <T> .Build(x, y, extractor, bprop, 1000); timer.Stop(); double err = bprop.Error(tx, ty, fis.RuleBase); Trace.WriteLine(string.Format("[{1} - {4}]\tLogistic map Error {0}\tElapsed {2}\tRuleBase {3}", err, bprop.GetType().Name, timer.Elapsed, fis.RuleBase.Length, typeof(T).Name), "training"); Assert.IsFalse(err > 1e-2); }
private void Solve(double[][] x, double[][] y, double[][] tx, double[][] ty, ITraining bprop) { KMEANSExtractorI extractor = new KMEANSExtractorI(int.Parse(txtbxRulesCount.Text)); var timer = Stopwatch.StartNew(); var fis = ANFISBuilder <GaussianRule2> .Build(x, y, extractor, bprop, int.Parse(txtbxMaxIterCount.Text)); timer.Stop(); double err = bprop.Error(tx, ty, fis.RuleBase); string line = ""; double correctClass = 0; for (int i = 0; i < tx.Length; i++) { double[] o = fis.Inference(tx[i]); if (tx[i].Length == 4 && o.Length == 3) { line = $"input: [{tx[i][0]}, {tx[i][1]}, {tx[i][2]}, {tx[i][3]}] output:[{o[0].ToString("F2")}, {o[1].ToString("F2")}, {o[2].ToString("F2")}] expected output: [{ty[i][0]}, {ty[i][1]}, {ty[i][2]}]"; } for (int j = 0; j < ty[i].Length; j++) { if (ty[i][j] == 1.0 && o[j] == o.Max()) { correctClass++; line += " OK"; } } if (tx[i].Length == 4 && o.Length == 3) { InMemoryLogger.PrintMessage(line); } } InMemoryLogger.PrintMessage(string.Format("Correct answers {5}\tClassification Error {4}\tElapsed {2}\tRuleBase {3}", err, bprop.GetType().Name, timer.Elapsed, fis.RuleBase.Length, 1.0 - correctClass / ty.Length, correctClass)); }
private static void subTestOptimization1(ITraining bprop, double[][] x, double[][] y, double[][] tx, double[][] ty) { GaussianRule2[] terms = new GaussianRule2[] { new GaussianRule2() }; terms[0].Init( new double[] { 0.5, 0.3 }, new double[] { 0 }, new double[] { 0.0, 0.0 }); int epoch = 0; int maxit = 1000; double trnError = 0.0; double tstError = 0.0; do { trnError = bprop.Iteration(x, y, terms); tstError = bprop.Error(tx, ty, terms); } while (!bprop.isTrainingstoped() && epoch++ < maxit); Trace.WriteLine(string.Format("Epochs {0} - Error {1}/{2}", epoch, trnError, tstError), "training"); Assert.IsFalse(tstError > 1e-2); Assert.IsFalse(trnError > 1e-2); Assert.AreEqual(terms[0].Z[0], 1.0, 1e-2); }