Exemple #1
0
        /// <summary>
        /// Disables the data received interrupt.
        /// </summary>
        public void DisableDataReceivedInterrupt()
        {
            IER ier = (IER)(ierBase.Read8());

            ier &= ~IER.DR;
            ierBase.Write8((byte)ier);
        }
Exemple #2
0
        /// <summary>
        /// Gets the palette.
        /// </summary>
        /// <param name="colorIndex">Index of the color.</param>
        /// <returns></returns>
        public Color GetPalette(byte colorIndex)
        {
            Color color = new Color();

            dacPaletteMask.Write8(0xFF);
            dacIndexRead.Write8(colorIndex);
            color.Red   = dacData.Read8();
            color.Green = dacData.Read8();
            color.Blue  = dacData.Read8();

            return(color);
        }
Exemple #3
0
        /// <summary>
        /// Writes the settings.
        /// </summary>
        /// <param name="settings">The settings.</param>
        protected void WriteSettings(byte[] settings)
        {
            // Write MISCELLANEOUS reg
            miscellaneousOutputWrite.Write8(settings[0]);

            // Write SEQUENCER regs
            for (byte i = 0; i < 5; i++)
            {
                sequencerAddress.Write8(i);
                sequencerData.Write8(settings[1 + i]);
            }

            // Unlock CRTC registers
            crtControllerIndexColor.Write8(0x03);
            crtControllerDataColor.Write8((byte)(crtControllerData.Read8() | 0x80));
            crtControllerIndexColor.Write8(0x11);
            crtControllerDataColor.Write8((byte)(crtControllerData.Read8() & ~0x80));

            // Make sure they remain unlocked
            settings[0x03] = (byte)(settings[0x03] | 0x80);
            settings[0x11] = (byte)(settings[0x11] & ~0x80);

            // Write CRTC regs
            for (byte i = 0; i < 25; i++)
            {
                crtControllerIndexColor.Write8(i);
                crtControllerDataColor.Write8(settings[6 + i]);
            }

            // Write GRAPHICS CONTROLLER regs
            for (byte i = 0; i < 9; i++)
            {
                graphicsControllerAddress.Write8(i);
                graphicsControllerData.Write8(settings[31 + i]);
            }

            // Write ATTRIBUTE CONTROLLER regs
            for (byte i = 0; i < 21; i++)
            {
                inputStatus1ReadB.Read8();
                attributeAddress.Write8(i);
                attributeAddress.Write8(settings[52 + i]);
            }

            // Lock 16-color palette and unblank display */
            inputStatus1ReadB.Read8();
            attributeAddress.Write8(0x20);
        }
Exemple #4
0
        public override void Start()
        {
            if (Device.Status != DeviceStatus.Available)
            {
                return;
            }

            WriteSettings(VGAText80x25);

            colorMode = ((miscellaneousOutput.Read8() & 1) == 1);

            if (colorMode)
            {
                offset                = 0x8000;
                bytePerChar           = 2;
                activeControllerIndex = crtControllerIndexColor;
                activeControllerData  = crtControllerDataColor;
            }
            else
            {
                offset                = 0x0;
                bytePerChar           = 1;
                activeControllerIndex = crtControllerIndex;
                activeControllerData  = crtControllerData;
            }

            width  = GetValue(CRTCommands.HorizontalDisplayEnableEnd);
            height = GetValue(CRTCommands.VerticalDisplayEnableEnd);

            width++;
            height = 25;

            Device.Status = DeviceStatus.Online;
        }
Exemple #5
0
 /// <summary>
 /// Reads the specified address.
 /// </summary>
 /// <param name="address">The address.</param>
 /// <returns></returns>
 public byte Read(byte address)
 {
     lock (_lock)
     {
         commandPort.Write8(address);
         return(dataPort.Read8());
     }
 }
        public override void Probe()
        {
            LBALowPort.Write8(0x88);

            var found = LBALowPort.Read8() == 0x88;

            Device.Status = (found) ? DeviceStatus.Available : DeviceStatus.NotFound;
        }
Exemple #7
0
        /// <summary>
        /// Reads in the sequence register's current value. The register is chosen by
        /// the given index.
        /// </summary>
        /// <param name="index">The index to the register</param>
        /// <returns>The register's value</returns>
        private byte ReadSequenceRegister(byte index)
        {
            // Select register
            seqControllerIndex.Write8(index);

            // Read contained value
            return(seqControllerData.Read8());
        }
Exemple #8
0
        /// <summary>
        /// Reads the specified address.
        /// </summary>
        /// <param name="address">The address.</param>
        /// <returns></returns>
        public byte Read(byte address)
        {
            spinLock.Enter();
            commandPort.Write8(address);
            var b = dataPort.Read8();

            spinLock.Exit();
            return(b);
        }
Exemple #9
0
        public override void Start()
        {
            if (Device.Status != DeviceStatus.Available)
            {
                return;
            }

            vgaEnableController.Write8((byte)(vgaEnableController.Read8() | 0x01));

            // Enable colors
            miscOutputWriter.Write8((byte)(miscOutputReader.Read8() | 0x01));

            // Enable MMIO
            crtcControllerIndex.Write8(0x53);
            crtcControllerData.Write8((byte)(crtcControllerData.Read8() | 0x8));

            // Unlock system registers
            WriteCrtcRegister(0x38, 0x48);
            WriteCrtcRegister(0x39, 0xa5);

            WriteCrtcRegister(0x40, 0x01, 0x01);
            WriteCrtcRegister(0x35, 0x00, 0x30);
            WriteCrtcRegister(0x33, 0x20, 0x72);

            WriteCrtcRegister(0x86, 0x80);
            WriteCrtcRegister(0x90, 0x00);

            // Detect number of MB of installed RAM
            byte[] ramSizes  = new byte[] { 4, 0, 3, 8, 2, 6, 1, 0 };
            int    ramSizeMB = ramSizes[(ReadCrtcRegister(0x36) >> 5) & 0x7];

            // Setup video memory
            memory = Device.Resources.GetMemory((byte)(ramSizeMB * 1024 * 1024));

            // Detect current mclk
            WriteSequenceRegister(0x08, 0x06);
            byte m  = (byte)(ReadSequenceRegister(0x11) & 0x7f);
            byte n  = ReadSequenceRegister(0x10);
            byte n1 = (byte)(n & 0x1f);
            byte n2 = (byte)((n >> 5) & 0x03);

            Device.Status = DeviceStatus.Online;
        }
        /// <summary>
        /// Reads the scan code from the device
        /// </summary>
        protected void ReadScanCode()
        {
            spinLock.Enter();

            byte v = commandPort.Read8();

            AddToFIFO(v);

            HAL.DebugWrite(" scancode: " + v.ToString() + "   ");

            spinLock.Exit();
        }
Exemple #11
0
        /// <summary>
        /// Reads the scan code from the device
        /// </summary>
        protected void ReadScanCode()
        {
            lock (_lock)
            {
                byte status = statusPort.Read8();

                if ((status & 0x01) == 0x01)
                {
                    byte data = dataPort.Read8();

                    AddToFIFO(data);
                }
            }
        }
Exemple #12
0
        public override void Start()
        {
            if (Device.Status != DeviceStatus.Available)
            {
                return;
            }

            Device.Status = DeviceStatus.Online;

            byte masterMask;
            byte slaveMask;

            // Save Masks
            masterMask = masterDataPort.Read8();
            slaveMask  = slaveDataPort.Read8();

            // ICW1 - Set Initialize Controller & Expect ICW4
            masterCommandPort.Write8(0x11);

            // ICW2 - interrupt offset
            masterDataPort.Write8(MasterIRQBase);

            // ICW3
            masterDataPort.Write8(0x04);

            // ICW4 - Set 8086 Mode
            masterDataPort.Write8(0x01);

            // ICW1 - Set Initialize Controller & Expect ICW4
            slaveCommandPort.Write8(0x11);

            // ICW2 - interrupt offset
            slaveDataPort.Write8(SlaveIRQBase);

            // ICW3
            slaveDataPort.Write8(0x02);

            // ICW4 - Set 8086 Mode
            slaveDataPort.Write8(0x01);

            // Restore Masks
            masterDataPort.Write8(masterMask);
            slaveDataPort.Write8(slaveMask);

            DisableIRQs();
        }
Exemple #13
0
 /// <summary>
 /// Determines whether this instance can transmit.
 /// </summary>
 /// <returns>
 ///     <c>true</c> if this instance can transmit; otherwise, <c>false</c>.
 /// </returns>
 protected bool CanTransmit()
 {
     return((lsrBase.Read8() & (byte)LSR.THRE) != 0);
 }
Exemple #14
0
 /// <summary>
 /// Gets the value.
 /// </summary>
 /// <param name="command">The command.</param>
 /// <returns></returns>
 protected byte GetValue(byte command)
 {
     activeControllerIndex.Write8(command);
     return(activeControllerData.Read8());
 }
        private void DoIdentifyDrive(byte index)
        {
            driveInfo[index].Present = false;

            //Send the identify command to the selected drive
            DeviceHeadPort.Write8((byte)((index == 0) ? 0xA0 : 0xB0));
            SectorCountPort.Write8(0);
            LBALowPort.Write8(0);
            LBAMidPort.Write8(0);
            LBAHighPort.Write8(0);
            CommandPort.Write8(IDECommand.IdentifyDrive);

            if (StatusPort.Read8() == 0)
            {
                //Drive doesn't exist
                return;
            }

            //Wait until a ready status is present
            if (!WaitForReadyStatus())
            {
                return;                 //There's no ready status, this drive doesn't exist
            }

            if (LBAMidPort.Read8() != 0 && LBAHighPort.Read8() != 0)             //Check if the drive is ATA
            {
                //In this case the drive is ATAPI
                //HAL.DebugWriteLine("Device " + index.ToString() + " not ATA");
                return;
            }

            //Wait until the identify data is present (256x16 bits)
            if (!WaitForIdentifyData())
            {
                //HAL.DebugWriteLine("Device " + index.ToString() + " ID error");
                return;
            }

            //An ATA drive is present
            driveInfo[index].Present = true;

            //Read the identification info
            var info = new DataBlock(512);

            for (uint ix = 0; ix < 256; ix++)
            {
                info.SetUShort(ix * 2, DataPort.Read16());
            }

            //Find the addressing mode
            var lba28SectorCount = info.GetUInt(IdentifyDrive.MaxLBA28);

            AddressingMode aMode = AddressingMode.NotSupported;

            if ((info.GetUShort(IdentifyDrive.CommandSetSupported83) & 0x200) == 0x200)             //Check the LBA48 support bit
            {
                aMode = AddressingMode.LBA48;
                driveInfo[index].MaxLBA = info.GetUInt(IdentifyDrive.MaxLBA48);
            }
            else if (lba28SectorCount > 0)             //LBA48 not supported, check LBA28
            {
                aMode = AddressingMode.LBA28;
                driveInfo[index].MaxLBA = lba28SectorCount;
            }

            driveInfo[index].AddressingMode = aMode;

            //HAL.DebugWriteLine("Device " + index.ToString() + " present - MaxLBA=" + driveInfo[index].MaxLBA.ToString());
        }
        /// <summary>
        /// Probes this instance.
        /// </summary>
        /// <returns></returns>
        public override bool Probe()
        {
            LBALowPort.Write8(0x88);

            return(LBALowPort.Read8() == 0x88);
        }
        private void DoIdentifyDrive(byte index)
        {
            //HAL.DebugWriteLine("Device " + index.ToString() + " ID...");

            driveInfo[index].Present = false;

            //Send the identify command to the selected drive
            DeviceHeadPort.Write8((byte)((index == 0) ? 0xA0 : 0xB0));
            SectorCountPort.Write8(0);
            LBALowPort.Write8(0);
            LBAMidPort.Write8(0);
            LBAHighPort.Write8(0);
            CommandPort.Write8(IDECommand.IdentifyDrive);

            if (StatusPort.Read8() == 0)
            {
                //HAL.DebugWriteLine("Device " + index.ToString() + " doesnt exist...");

                //Drive doesn't exist
                return;
            }

            //Wait until a ready status is present
            if (!WaitForReadyStatus())
            {
                return;                                              //There's no ready status, this drive doesn't exist
            }
            if (LBAMidPort.Read8() != 0 && LBAHighPort.Read8() != 0) //Check if the drive is ATA
            {
                //In this case the drive is ATAPI, which is not supported
                //HAL.DebugWriteLine("Device " + index.ToString() + " not ATA");

                return;
            }

            //Wait until the identify data is present (256x16 bits)
            if (!WaitForIdentifyData())
            {
                //HAL.DebugWriteLine("Device " + index.ToString() + " ID error");
                return;
            }

            //Read the identification info
            var info = new DataBlock(512);

            for (uint ix = 0; ix < 256; ix++)
            {
                info.SetUShort(ix * 2, DataPort.Read16());
            }

            //Find the addressing mode
            bool lba48Supported = ((info.GetUShort(IdentifyDrive.CommandSetSupported83) & 0x200) == 0x200);

            driveInfo[index].AddressingMode = (lba48Supported ? AddressingMode.LBA48 : AddressingMode.LBA28);

            //Find the max LBA count
            uint  lba28SectorCount = info.GetUInt(IdentifyDrive.MaxLBA28);
            ulong lba48SectorCount = info.GetULong(IdentifyDrive.MaxLBA48);

            //HAL.DebugWriteLine("LBA48BIT=" + lba48Supported.ToString());
            //HAL.DebugWriteLine("LBA28   =" + lba28SectorCount.ToString("X2"));

            if (!lba48Supported)            //No LBA48
            {
                driveInfo[index].MaxLBA = lba28SectorCount;
            }
            else                                    //LBA48 supported
            {
                if (lba28SectorCount == 0x0FFFFFFF) //Check the limit according to the d1699r3f-ata8-acs.pdf (4.10.4 IDENTIFY DEVICE data)
                {
                    driveInfo[index].MaxLBA = (uint)lba48SectorCount;
                }
                else
                {
                    driveInfo[index].MaxLBA = lba28SectorCount;
                }
            }

            //An ATA drive is present and ready to use
            driveInfo[index].Present = true;

            //HAL.DebugWriteLine("Device " + index.ToString() + " present - MaxLBA=" + driveInfo[index].MaxLBA.ToString());
        }