Exemple #1
0
    public static void Main(string[] args)
    {
        try {
            Cplex     cplex = new Cplex();
            ILPMatrix lp    = PopulateByRow(cplex);

            int[]    ind = { 0 };
            double[] val = { 1.0 };

            // When a non-convex objective function is present, CPLEX
            // will raise an exception unless the parameter
            // Cplex.Param.SolutionTarget is set to accept
            // first-order optimal solutions
            cplex.SetParam(Cplex.Param.SolutionTarget, 2);

            // CPLEX may converge to either local optimum
            SolveAndDisplay(cplex, lp);

            // Add a constraint that cuts off the solution at (-1, 1)
            lp.AddRow(0.0, System.Double.MaxValue, ind, val);
            SolveAndDisplay(cplex, lp);

            // Remove the newly added constraint and add a new constraint
            // with the opposite sense to cut off the solution at (1, 1)
            lp.RemoveRow(lp.Nrows - 1);
            lp.AddRow(-System.Double.MaxValue, 0.0, ind, val);
            SolveAndDisplay(cplex, lp);

            cplex.ExportModel("indefqpex1.lp");
            cplex.End();
        }
        catch (ILOG.Concert.Exception e) {
            System.Console.WriteLine("Concert exception '" + e + "' caught");
        }
    }
Exemple #2
0
    static ILPMatrix PopulateByRow(IMPModeler model)
    {
        ILPMatrix lp = model.AddLPMatrix();

        double[]  lb = { 0.0, 0.0, 0.0 };
        double[]  ub = { 40.0, Double.MaxValue, Double.MaxValue };
        INumVar[] x  = model.NumVarArray(model.ColumnArray(lp, 3), lb, ub);
        INumVar   y  = model.IntVar(model.Column(lp), 0, 3);

        // - x0 +   x1 + x2 + 10*y <= 20
        //   x0 - 3*x1 + x2        <= 30
        double[]   lhs = { -Double.MaxValue, -Double.MaxValue };
        double[]   rhs = { 20.0, 30.0 };
        double[][] val = { new double[] { -1.0,  1.0, 1.0, 10.0 },
                           new double[] {  1.0, -3.0, 1.0 } };
        int[][]    ind = { new int[] { 0, 1, 2, 3 },
                           new int[] { 0, 1, 2 } };
        lp.AddRows(lhs, rhs, ind, val);
        // x1 + 3.5*y = 0
        lp.AddRow(model.Eq(model.Diff(x[1], model.Prod(3.5, y)), 0.0));

        // Q = 0.5 ( 33*x0*x0 + 22*x1*x1 + 11*x2*x2 - 12*x0*x1 - 23*x1*x2 )
        INumExpr x00 = model.Prod(33.0, model.Square(x[0]));
        INumExpr x11 = model.Prod(22.0, model.Square(x[1]));
        INumExpr x22 = model.Prod(11.0, model.Square(x[2]));
        INumExpr x01 = model.Prod(-12.0, model.Prod(x[0], x[1]));
        INumExpr x12 = model.Prod(-23.0, model.Prod(x[1], x[2]));
        INumExpr Q   = model.Prod(0.5, model.Sum(x00, x11, x22, x01, x12));

        // maximize x0 + 2*x1 + 3*x2 + Q
        double[] objvals = { 1.0, 2.0, 3.0 };
        model.Add(model.Maximize(model.Diff(model.ScalProd(x, objvals), Q)));

        return(lp);
    }